Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

Seminar talk at Lanzhou University

2024.11.22

Zhifei Z<u>hu</u>

Seminar talk at Lanzhou University

Geodesics

Definition

The systole sys(M) is the least length of a non-trivial closed geodesic.

Zhifei Zhu

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Geodesics

Definition

The systole sys(M) is the least length of a non-trivial closed geodesic.

Seminar talk at Lanzhou University

Zhifei Zhu

Zhifei Zhu

Loewner inequality

Suppose that M is homeomorphic to T^2 ,

$$sys^2 \leq rac{2}{\sqrt{3}}Area(M)$$

<ロト < 部 ト < 臣 ト < 臣 ト 三 の < 0</p>

Seminar talk at Lanzhou University

Loewner inequality

Suppose that M is homeomorphic to T^2 ,

$$sys^2 \leq rac{2}{\sqrt{3}}Area(M)$$

Pu's inequality (1949)

Suppose that *M* is homeomorphic to $\mathbb{R}P^2$,

$$sys^2 \leq \frac{\pi}{2}Area(M)$$

Zhifei Zhu

Seminar talk at Lanzhou University

< D > < P > < E >

C. Croke (88), (improved by A. Nabutovsky-R. Rotman(02), S. Sabourau(04), and Rotman(06))

Suppose that M is homeomorphic to S^2 ,

 $sys^2 \leq 32Area(M)$

Zhifei Zhu

Seminar talk at Lanzhou University

C. Croke (88), (improved by A. Nabutovsky-R. Rotman(02), S. Sabourau(04), and Rotman(06))

Suppose that M is homeomorphic to S^2 ,

 $sys^2 \leq 32Area(M)$

Conjecture. (E. Calabi, J. Cao (92); Croke (88))

The best constant is $2\sqrt{3}$.

Zhifei Zhu

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Seminar talk at Lanzhou University

< □ > < 同 > < 回 > < □ > <

Question. (M. Gromov (83))

Is it true that the systole of an *n*-dimensional Riemannian manifold can be bounded by $constant(n)vol(M)^{1/n}$?

Remark.

Similar questions can be asked about diameter and other geometric quantities. Note that if M is not simply-connected, then an upper-bound of systole in terms of diameter is trivial.

Example. (F. Balacheff, C. Croke and M. Katz (09))

There exists (Zoll) Riemannian metric on S^2 such that sys > 2D, where D is the diameter.

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Example. (F. Balacheff, C. Croke and M. Katz (09))

There exists (Zoll) Riemannian metric on S^2 such that sys > 2D, where D is the diameter.

Croke (88) (9D), improved by M. Maeda (94) (5D), Sabourau(04) (4D), and Nabutovsky-Rotman(09) (4D)

Suppose that M is homeomorphic to S^2 ,

sys $\leq 4D$

Zhifei Zhu

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

Higher dimensional manifolds, Nabtovsky-Rotman (03)

Let M be a closed Riemannian manifold with sectional curvature ≤ 1 and volume $\leq V$. Then

 $sys \leq 2\pi (V+1)^{c(n)V^n}.$

Seminar talk at Lanzhou University

Higher dimensional manifolds, Nabtovsky-Rotman (03)

Let M be a closed Riemannian manifold with sectional curvature ≤ 1 and volume $\leq V$. Then

sys
$$\leq 2\pi (V+1)^{c(n)V^n}$$
 .

Nabtovsky-Rotman (03)

Let *M* be a closed Riemannian manifold with sectional curvature ≥ -1 , diam $\leq D$ and volume $\geq V > 0$. Then

$$sys \leq exp(rac{exp(c_1(n)D)}{min\{1,V\}^{c_2(n)}}).$$

Zhifei Zhu

Seminar talk at Lanzhou University

イロト イヨト イヨト イヨト

N. Wu and Z. (19)

Let *M* be a closed simply-connected 4-dimensional Riemannian manifold with Ricci curvature |Ric| < 3, diam $\leq D$ and volume $\geq V > 0$. Then

sys $\leq F(V, D)$.

Moreover, F can be explicitly computed if M is Einstein.

Intuition

- Morse theory
- Width of a homotopy
- Cheeger-Naber Structural theorem

Seminar talk at Lanzhou University

< 17 ▶

Morse theory (Lusternik-Fet)

・ロト・白 ト・川川 ト・山 ・ シック

Zhifei Zhu

Seminar talk at Lanzhou University

Morse theory (Lusternik-Fet)

Seminar talk at Lanzhou University

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Zhifei Zhu

2

Zhifei Zhu

Э Seminar talk at Lanzhou University

< □ > < 同

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

1

Zhifei Zhu

 $= \exists \rightarrow$

2

Width of a homotopy

(ロト 4 団 ト 4 国 ト 4 国 ト 4 回 ト 4 回 ト

Zhifei Zhu

Seminar talk at Lanzhou University

Width of a homotopy

Lemma. (Alex Nabutovsky and Regina Rotman)

Control of the width. \Rightarrow Control of the longest curve during a homotopy.

Zhifei Zhu

Seminar talk at Lanzhou University

Width of a homotopy

Zhifei Zhu

Seminar talk at Lanzhou University

Structural theorem (Jeff Cheeger and Aaron Naber, 2015)

- 《曰》 《曰》 《三》 《三》 《曰 》 《

Zhifei Zhu

Seminar talk at Lanzhou University

Structural theorem (Jeff Cheeger and Aaron Naber, 2015)

A manifold covered by "good sets"

Zhifei Zhu

Seminar talk at Lanzhou University

イロト イロト

Zhifei Zhu

Seminar talk at Lanzhou University

・ロト・日本・日本・日本・日本・日本

Zhifei Zhu

Seminar talk at Lanzhou University

- イロト (四) (三) (三) (三) (日)

Zhifei Zhu

Seminar talk at Lanzhou University

・ロト ・回 ト ・ ヨト ・ ヨー ・ つへの

Zhifei Zhu

Seminar talk at Lanzhou University

- 《日》 《母》 《母》 《母》 - 日 》

Zhifei Zhu

Seminar talk at Lanzhou University

Zhifei Zhu

Reducing the width

<ロト <回ト < 回ト <

Э

Seminar talk at Lanzhou University

1

Difficulty

The number of the edges in the approximation of $\gamma \sim \frac{\overline{\text{length}(\gamma)}}{r_h}$ may not be bounded by any function of v and D.

Zhifei Zhu

Systolic inequality on Riemannian manifolds with bounded Ricci curvature

Difficulty

The number of the edges in the approximation of $\gamma \sim \frac{\text{length}(\gamma)}{r_h}$ may not be bounded by any function of v and D.

Observation 1

Every closed curve is homotopic to a wedge of "almost" geodesic digons α_i through a homotopy of width bounded by $2D + \varepsilon$.

Difficulty

The number of the edges in the approximation of $\gamma \sim \frac{\text{length}(\gamma)}{r_h}$ may not be bounded by any function of v and D.

Observation 1

Every closed curve is homotopic to a wedge of "almost" geodesic digons α_i through a homotopy of width bounded by $2D + \varepsilon$.

Zhifei Zhu

Observation 2

If each α_i can be contracted to a point with width $\langle W_i$, then $\forall \alpha_i$ can be contracted with width $2 \cdot \max_i W_i$.

Seminar talk at Lanzhou University

Observation 2

If each α_i can be contracted to a point with width $\langle W_i$, then $\forall \alpha_i$ can be contracted with width $2 \cdot \max_i W_i$.

Observation 3

The number of the edges in the approximation of a minimizing geodesic must be small (\leq 5).

Seminar talk at Lanzhou University

Zhifei Zhu

Summary

- Morse theory on the loop space & Sweep-out of the manifold.
- Width of a homotopy: geometrically approachable.
- Cheeger-Naber Structural theorem: may compute width via combinatorics.