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=⇒ We can form Ker(dn)/Im(dn−1) = {0} ∀n ≥ 1.
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Bounded cohomology of groups
The comparison map

There is a natural inclusion

Cn
b (Γ,E ) −→ Cn(Γ,E )

that commutes with the operators dn.

This induces a morphism in cohomology

cn : Hn
b (Γ,E ) −→ Hn(Γ,E )

called the comparison map.
Question : When is this map injective ? Surjective ? Bijective ?

Theorem (Burger-Monod ’99)

Let Γ be an irreducible cocompact lattice in a higher rank Lie
group. Then cn : H2

b(Γ,E ) → H2(Γ,E ) is injective for any
separable Hilbert space E with unitary Γ-action.
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Bounded cohomology of groups
Properties

Theorem

Γ is finite ⇐⇒ Hn
b (Γ,E ) = 0 ∀ n > 0,∀ Banach Γ-module E .

Theorem (Johnson ’72)

Γ is amenable ⇐⇒ Hn
b (Γ,E ) = 0 ∀ n > 0,∀ dual Banach

Γ-module E .

Dual : E = L∞(V ,R).
∀ g ∈ Γ, λ ∈ E , v ∈ V , (g · λ)(v) = λ(g−1v).
Example : E = R = L∞({0},R) with trivial Γ-action.

Theorem (Bavard ’91)

H2
b(Γ,R) = 0 =⇒ scl(Γ) = 0.
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Recent results

Theorem (Monod ’22)

Γ = F Thompson’s group =⇒ Hn
b (Γ,E ) = 0 ∀ n > 0, ∀

separable dual Banach Γ-module E .

Γ = H ≀ Z = (⊕j∈ZH)⋊ Z =⇒ Hn
b (Γ,E ) = 0 ∀ n > 0,∀

separable dual Banach Γ-module E .

Separable dual : E is separable and dual.
Example : E = L2(V ,R).
Example : E = R = L2({0},R) with trivial Γ-action.
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Let Γ have c. c. Then
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2 H2
b(Γ,R) = 0 (Fournier-Facio-Lodha ’23).
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Applications
Linear groups

Γ = GL(R) = ∪j≥1GLj(R), where R is any ring with unit.

Let H ≤ Γ a f. g. subgroup. So ∃ j s. t. H ≤ GLj(R).
Set

t : ei 7→ ej+i , 1 ≤ i ≤ j ,

ej+i 7→ ei , 1 ≤ i ≤ j .

t ∈ GL2j(R), ord(t) = 2, and

[H, tH] = 1, [H, t2] = 1.

Similar for SL(R),Sp(R),O(R),SO(R),E (R), ....
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Applications
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Hn
b (GL(R),E ) = 0 ∀n > 0 for any separable dual Banach

Γ-module E .
Similar for SL(R), Sp(R),O(R),SO(R),E (R), ....

Caution : NOT true in general for the individual groups
GLj(R),SLj(R),Sp2j(R),Oj(R),SOj(R),Ej(R), ....

Theorem (Burger-Monod ’99)

X an irreducible symmetric space of non-compact type of rank
≥ 3, Γ ≤ Isom(X ) a cocompact lattice. Then

if X is not hermitian symmetric, then H2
b(Γ,R) = 0 ;

if X is hermitian symmetric, then H2
b(Γ,R) is

one-dimensional, generated by the Kähler class.
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Stable mapping class group

Γ = Γ∞ = ∪g≥1MCG (Σg ,1) (with compact support in the interior
of Σg ,1).

Let H ≤ Γ a f. g. subgroup. So ∃ g s. t. H ≤ MCG (Σg ,1).

t ∈ MCG (Σ2g ,1), supp(H) ∩ supp(tH) = ∅, t2|supp(H) = id .

=⇒ [H, tH] = 1, [H, t2] = 1.
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Ideas of proof (1)
c. c. c. and wreath products

Proposition (C.-F.-F.-L.-M. ’23)

Γ has c. c. c.⇐⇒ ∀H ≤ Γ f. g. subgroup, ∃ countable amenable
group A, infinite transitive A-set X and homomorphism
fH : H ≀X A → Γ s. t.

fH |H : H → Γ is the inclusion, and

Ker(fH) is amenable.

Gromov =⇒ H∗
b(H ≀X A,E ) ∼= H∗

b(Im(fH),E ).

Γ =
⋃

H≤f .g.Γ

H =
⋃

H≤f .g.Γ

Im(fH).
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Ideas of proof (2)
Wreath products and bounded cohomology

Proposition (Monod ’22, C.-F.-F.-L.-M. ’23)

If Γ ∼= H ≀X A with

H,A countable ;

A amenable ;

X countable set, A ↷ X , all orbits Ax are infinite ;

then for any separable dual Banach Γ-module E , the complex of
cochains

0 −→ EΓ 0−→ EΓ id−→ EΓ 0−→ ...

computes H∗
b(Γ,E ).

=⇒ Hn
b (Γ,E ) = 0 ∀ n > 0.



Ideas of proof (3)
Vanishing modulus

Definition

Γ group, E Banach Γ-module, n > 0. The n-th vanishing modulus
of Γ with coefficients in E is

∥Hn
b (Γ,E )∥ = inf{K ∈ [0,∞]|∀z ∈ Zn

b (Γ,E ), ∃b ∈ Cn−1
b (Γ,E )Γ

s. t. dn−1(b) = z , ∥b∥∞ ≤ K∥z∥∞}.

Remark

If ∥Hn
b (Γ,E )∥ < ∞, Hn

b (Γ,E ) = 0.

Proposition (C.-F.-F.-L.-M. ’23)

I index set, Γ group, n ≥ 1.
Let {Γi}i∈I be a family of subgroups of Γ s. t. ∀H ≤ Γ f. g., ∃i0 ∈ I
s. t. H ≤ Γi0 .
=⇒ ∥Hn

b (Γ,E )∥ ≤ supi∈I ∥Hn
b (Γi ,E )∥ ∀E separable dual Banach

Γ-module.

Proposition (C.-F.-F.-L.-M. ’23)

∀n ≥ 1∃Kn ∈ [0,∞) s. t. : ∀Γ ∼= H ≀X A with

H,A countable ;

A amenable ;

X countable set, A ↷ X , all orbits Ax are infinite ;

for any separable dual Banach Γ-module E , for any normal
amenable subgroup N ≤ H ≀X A,

∥Hn
b ((H ≀X A)/N,E )∥ ≤ Kn.
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amenable subgroup N ≤ H ≀X A,

∥Hn
b ((H ≀X A)/N,E )∥ ≤ Kn.



Ideas of proof (3)
Vanishing modulus

Proposition (C.-F.-F.-L.-M. ’23)

I index set, Γ group, n ≥ 1.
Let {Γi}i∈I be a family of subgroups of Γ s. t. ∀H ≤ Γ f. g., ∃i0 ∈ I
s. t. H ≤ Γi0 .
=⇒ ∥Hn

b (Γ,E )∥ ≤ supi∈I ∥Hn
b (Γi ,E )∥ ∀E separable dual Banach

Γ-module.

Proposition (C.-F.-F.-L.-M. ’23)

∀n ≥ 1∃Kn ∈ [0,∞) s. t. ∀Γ ∼= H ≀X A with

H,A countable ;

A amenable ;

X countable set, A ↷ X , all orbits Ax are infinite ;

∀ separable dual Banach Γ-module E , ∀ normal amenable
N ≤ H ≀X A,

∥Hn
b ((H ≀X A)/N,E )∥ ≤ Kn.



Thank you for your attention !



Bounded cohomology of groups
Recent results

Theorem (Monod ’22)

Γ = F Thompson’s group =⇒ H∗
b(Γ,E ) = 0 ∀ ∗ > 0, ∀

separable dual Banach Γ-module E .

Γ = H ≀ Z = (⊕n∈ZH)⋊ Z =⇒ H∗
b(Γ,E ) = 0 ∀ ∗ > 0,∀

separable dual Banach Γ-module E .

Theorem (Monod-Nariman ’23)

Let j ≥ 1, r ∈ N ∪ {∞}, and M be a closed manifold. If Γ is

Homeoc(M × Rj),

Diffeorc(M × Rj),

Homeoc,0(M × Rj),

Diffeorc,0(M × Rj),

=⇒ Hn
b (Γ,E ) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E .


