A new vanishing criterion for bounded cohomology

Caterina Campagnolo

Universidad Autónoma de Madrid

Geometry and Topology Seminar, Lanzhou University, December 4, 2024

 Γ a discrete group

 Γ a discrete group

Invariants

 Γ a discrete group

Invariants in abelian groups/rings :

Γ a discrete group

Invariants in abelian groups/rings :

- homology, cohomology,
- ℓ^2 -homology, ℓ^2 -cohomology,
- K-theory,
- bounded cohomology,
- ...

Γ a discrete group

Invariants in abelian groups/rings :

- homology, cohomology,
- ℓ^2 -homology, ℓ^2 -cohomology,
- K-theory,
- bounded cohomology,
- ...

Ingredients

• Γ discrete group

- Γ discrete group
- R a ring

- Γ discrete group
- R a ring
- E an $R\Gamma$ -module

- Γ discrete group
- R a ring
- E an RΓ-module
 Example : R = Z, E = Z, with trivial ZΓ-action.

Ingredients

- $\bullet~\Gamma$ discrete group
- R a ring
- E an $R\Gamma$ -module Example : $R = \mathbb{Z}, E = \mathbb{Z}$, with trivial $\mathbb{Z}\Gamma$ -action.

 \rightsquigarrow cohomology of Γ with coefficients in E,

 $H^n(\Gamma, E), \ n \ge 0.$

Definition

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f : \Gamma^{n+1} \to E\}$,

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f : \Gamma^{n+1} \to E\}$,

$$d^{n}: C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$
$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f : \Gamma^{n+1} \to E\}$,

$$d^n \colon C^n(\Gamma, E) o C^{n+1}(\Gamma, E)$$

 $f \mapsto \left\{ (\gamma_0, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^i f(\gamma_0, ..., \widehat{\gamma_i}, ..., \gamma_{n+1})
ight\}.$

Cochain complex :

$$0 \xrightarrow{d^{-1}} C^0(\Gamma, E) \xrightarrow{d^0} C^1(\Gamma, E) \xrightarrow{d^1} C^2(\Gamma, E) \xrightarrow{d^2} \dots$$

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\}$,

$$d^n \colon C^n(\Gamma, E) o C^{n+1}(\Gamma, E)$$

 $f \mapsto \left\{ (\gamma_0, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^i f(\gamma_0, ..., \widehat{\gamma_i}, ..., \gamma_{n+1})
ight\}.$

Cochain complex :

$$0 \xrightarrow{d^{-1}} C^0(\Gamma, E) \xrightarrow{d^0} C^1(\Gamma, E) \xrightarrow{d^1} C^2(\Gamma, E) \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\}$,

$$d^n \colon C^n(\Gamma, E) o C^{n+1}(\Gamma, E)$$

 $f \mapsto \left\{ (\gamma_0, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^i f(\gamma_0, ..., \widehat{\gamma_i}, ..., \gamma_{n+1})
ight\}.$

Cochain complex :

$$0 \xrightarrow{d^{-1}} C^0(\Gamma, E) \xrightarrow{d^0} C^1(\Gamma, E) \xrightarrow{d^1} C^2(\Gamma, E) \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$

 \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1})$

Define, for all $n \ge 0$, $C^n(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\}$,

$$d^{n} \colon C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$
$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

Cochain complex :

$$0 \xrightarrow{d^{-1}} C^0(\Gamma, E) \xrightarrow{d^0} C^1(\Gamma, E) \xrightarrow{d^1} C^2(\Gamma, E) \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$

 \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}) = \{0\} \quad \forall n \ge 1.$

Definition

$$C^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\},\$$

$$d^{n} \colon C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

 Γ acts on $\mathit{C^n}(\Gamma, E)$:

$$(\gamma \cdot f)(\gamma_0,...,\gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0,...,\gamma^{-1}\gamma_n).$$

Definition

$$C^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\},\$$

$$d^{n} \colon C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

 Γ acts on $C^n(\Gamma, E)$:

$$(\gamma \cdot f)(\gamma_0,...,\gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0,...,\gamma^{-1}\gamma_n).$$

$$0 \xrightarrow{d^{-1}} C^0(\Gamma, E) \xrightarrow{d^0} C^1(\Gamma, E) \xrightarrow{d^1} C^2(\Gamma, E) \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$

 \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}) = \{0\} \quad \forall n \ge 1.$

Definition

$$C^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\},\$$

$$d^{n} \colon C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

 $\Gamma \text{ acts on } C^n(\Gamma, E) :$ $(\gamma \cdot f)(\gamma_0, ..., \gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0, ..., \gamma^{-1}\gamma_n).$

$$0 \longrightarrow C^{0}(\Gamma, E)^{\Gamma} \xrightarrow{d^{0}} C^{1}(\Gamma, E)^{\Gamma} \xrightarrow{d^{1}} C^{2}(\Gamma, E)^{\Gamma} \xrightarrow{d^{2}} \dots$$

Fact : $d^{n} \circ d^{n-1} = 0 \quad \forall n \ge 0.$

 \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}),$

Definition

$$C^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E\},\$$

$$d^{n} \colon C^{n}(\Gamma, E) \to C^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

 $\Gamma \text{ acts on } C^n(\Gamma, E) :$ $(\gamma \cdot f)(\gamma_0, ..., \gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0, ..., \gamma^{-1}\gamma_n).$

$$0 \longrightarrow C^{0}(\Gamma, E)^{\Gamma} \xrightarrow{d^{0}} C^{1}(\Gamma, E)^{\Gamma} \xrightarrow{d^{1}} C^{2}(\Gamma, E)^{\Gamma} \xrightarrow{d^{2}} \dots$$

=act : $d^{n} \circ d^{n-1} = 0 \quad \forall n \ge 0.$

⇒ We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1})$, not necessarily {0} anymore. Define $H^n(\Gamma, E) = \operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1})$.

Ingredients

• Γ discrete group

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C})

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C}) (normed ring)

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C}) (normed ring)
- *E Banach* Γ*-module*, i.e. Banach space with Γ-action by linear isometries

Ingredients

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C}) (normed ring)
- *E Banach* Γ*-module*, i.e. Banach space with Γ-action by linear isometries

Example : $E = \mathbb{R}$, with trivial Γ -action.

Ingredients

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C}) (normed ring)
- *E Banach* Γ*-module*, i.e. Banach space with Γ-action by linear isometries

Example : $E = \mathbb{R}$, with trivial Γ -action.

Note : In this talk, \mathbb{R} will always carry the trivial Γ -action.

Ingredients

- Γ discrete group
- $R = \mathbb{R}$ (or \mathbb{C}) (normed ring)
- E Banach Γ-module, i.e. Banach space with Γ-action by linear isometries

Example : $E = \mathbb{R}$, with trivial Γ -action.

Note : In this talk, \mathbb{R} will always carry the trivial Γ -action.

 \rightsquigarrow bounded cohomology of Γ with coefficients in E,

 $H^n_{\mathbf{b}}(\Gamma, E), n \ge 0.$

Bounded cohomology of groups Definition

$$C_{b}^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E \mid ||f||_{\infty} < \infty\},\$$

$$d^{n} \colon C_{b}^{n}(\Gamma, E) \to C_{b}^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

$$\Gamma \text{ acts on } C^n_{\mathcal{b}}(\Gamma, E) :$$

$$(\gamma \cdot f)(\gamma_0, ..., \gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0, ..., \gamma^{-1}\gamma_n).$$

$$0 \xrightarrow{d^{-1}} C_b^0(\Gamma, E)^{\Gamma} \xrightarrow{d^0} C_b^1(\Gamma, E)^{\Gamma} \xrightarrow{d^1} C_b^2(\Gamma, E)^{\Gamma} \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$ \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}).$

Bounded cohomology of groups Definition

$$C_{b}^{n}(\Gamma, E) = \{f \colon \Gamma^{n+1} \to E \mid ||f||_{\infty} < \infty\},\$$

$$d^{n} \colon C_{b}^{n}(\Gamma, E) \to C_{b}^{n+1}(\Gamma, E)$$

$$f \mapsto \left\{ (\gamma_{0}, ..., \gamma_{n+1}) \mapsto \sum_{i=0}^{n+1} (-1)^{i} f(\gamma_{0}, ..., \widehat{\gamma_{i}}, ..., \gamma_{n+1}) \right\}.$$

$$\Gamma \text{ acts on } C^n_{\mathcal{b}}(\Gamma, E) :$$

$$(\gamma \cdot f)(\gamma_0, ..., \gamma_n) = \gamma \cdot f(\gamma^{-1}\gamma_0, ..., \gamma^{-1}\gamma_n).$$

$$0 \xrightarrow{d^{-1}} C^0_b(\Gamma, E)^{\Gamma} \xrightarrow{d^0} C^1_b(\Gamma, E)^{\Gamma} \xrightarrow{d^1} C^2_b(\Gamma, E)^{\Gamma} \xrightarrow{d^2} \dots$$

Fact : $d^n \circ d^{n-1} = 0 \quad \forall n \ge 0.$ \implies We can form $\operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}).$ Define $H^n_b(\Gamma, E) = \operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1}).$

The norm

Any $f \in C_b^n(\Gamma, E)$ has norm $||f||_{\infty}$.

The norm

Any $f \in C_b^n(\Gamma, E)$ has norm $||f||_{\infty}$. This descends to a *semi-norm* in cohomology :

The norm

Any $f \in C_b^n(\Gamma, E)$ has norm $||f||_{\infty}$. This descends to a *semi-norm* in cohomology : Let $c \in \text{Ker}(d^n) \subset C_b^n(\Gamma, E)$ represent a cohomology class $[c] \in H_b^n(\Gamma, E)$. Then

The norm

Any $f \in C_b^n(\Gamma, E)$ has norm $||f||_{\infty}$. This descends to a *semi-norm* in cohomology : Let $c \in \text{Ker}(d^n) \subset C_b^n(\Gamma, E)$ represent a cohomology class $[c] \in H_b^n(\Gamma, E)$. Then

 $\|[c]\|_{\infty} = \inf \left\{ \|c + d^{n-1}(b)\|_{\infty} \mid b \in C_b^{n-1}(\Gamma, E) \right\} \ge 0.$

The norm

Any $f \in C_b^n(\Gamma, E)$ has norm $||f||_{\infty}$. This descends to a *semi-norm* in cohomology : Let $c \in \text{Ker}(d^n) \subset C_b^n(\Gamma, E)$ represent a cohomology class $[c] \in H_b^n(\Gamma, E)$. Then

$$\|[c]\|_{\infty} = \inf \left\{ \|c + d^{n-1}(b)\|_{\infty} \mid b \in C_b^{n-1}(\Gamma, E) \right\} \ge 0.$$

 \rightsquigarrow rigidity results, numerical constraints...

The comparison map

There is a natural inclusion

$$C_b^n(\Gamma, E) \longrightarrow C^n(\Gamma, E)$$

that commutes with the operators d^n .

The comparison map

There is a natural inclusion

 $C_b^n(\Gamma, E) \longrightarrow C^n(\Gamma, E)$

that commutes with the operators d^n . This induces a morphism in cohomology

$$c^n \colon H^n_b(\Gamma, E) \longrightarrow H^n(\Gamma, E)$$

called the comparison map.

The comparison map

There is a natural inclusion

 $C_b^n(\Gamma, E) \longrightarrow C^n(\Gamma, E)$

that commutes with the operators d^n . This induces a morphism in cohomology

$$c^n \colon H^n_b(\Gamma, E) \longrightarrow H^n(\Gamma, E)$$

called the comparison map.

Question : When is this map injective? Surjective? Bijective?

The comparison map

There is a natural inclusion

 $C_b^n(\Gamma, E) \longrightarrow C^n(\Gamma, E)$

that commutes with the operators d^n . This induces a morphism in cohomology

$$c^n \colon H^n_b(\Gamma, E) \longrightarrow H^n(\Gamma, E)$$

called the comparison map.

Question : When is this map injective? Surjective? Bijective?

Theorem (Burger-Monod '99)

Let Γ be an irreducible cocompact lattice in a higher rank Lie group. Then $c^n \colon H^2_b(\Gamma, E) \to H^2(\Gamma, E)$ is injective for any separable Hilbert space E with unitary Γ -action.

Properties

Properties

Theorem

 Γ is finite $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall Banach \ \Gamma$ -module E.

Properties

Theorem

 Γ is finite $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ Banach } \Gamma\text{-module } E.$

Theorem (Johnson '72)

 Γ is amenable $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ dual Banach}$

 Γ -module E.

Properties

Theorem

 Γ is finite $\iff H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ Banach } \Gamma\text{-module } E.$

Theorem (Johnson '72)

 Γ is amenable $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ dual Banach } \Gamma$ -module E.

Dual : $E = L^{\infty}(V, \mathbb{R})$. $\forall g \in \Gamma, \lambda \in E, v \in V, (g \cdot \lambda)(v) = \lambda(g^{-1}v)$.

Properties

Theorem

 Γ is finite $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ Banach } \Gamma\text{-module } E.$

Theorem (Johnson '72)

 Γ is amenable $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ dual Banach } \Gamma$ -module E.

Dual : $E = L^{\infty}(V, \mathbb{R})$. $\forall g \in \Gamma, \lambda \in E, v \in V, (g \cdot \lambda)(v) = \lambda(g^{-1}v)$. Example : $E = \mathbb{R} = L^{\infty}(\{0\}, \mathbb{R})$ with trivial Γ -action.

Properties

Theorem

 Γ is finite $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ Banach } \Gamma\text{-module } E.$

Theorem (Johnson '72)

 Γ is amenable $\iff H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ dual Banach } \Gamma$ -module E.

Dual :
$$E = L^{\infty}(V, \mathbb{R})$$
.
 $\forall g \in \Gamma, \lambda \in E, v \in V, (g \cdot \lambda)(v) = \lambda(g^{-1}v)$.
Example : $E = \mathbb{R} = L^{\infty}(\{0\}, \mathbb{R})$ with trivial Γ -action

Theorem (Bavard '91) $H_b^2(\Gamma, \mathbb{R}) = 0 \Longrightarrow scl(\Gamma) = 0.$

Recent results

Theorem (Monod '22)

Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.

Recent results

Theorem (Monod '22)

- $\Gamma = F$ Thompson's group $\Longrightarrow H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Recent results

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Separable dual : *E* is separable and dual.

Recent results

Theorem (Monod '22)

- $\Gamma = F$ Thompson's group $\Longrightarrow H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.
- Γ = H ≥ Z = (⊕_{j∈Z}H) × Z ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.

Separable dual : *E* is separable and dual. Example : $E = L^2(V, \mathbb{R})$.

Recent results

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Separable dual : E is separable and dual. Example : $E = L^2(V, \mathbb{R})$. Example : $E = \mathbb{R} = L^2(\{0\}, \mathbb{R})$ with trivial Γ -action.

Recent results and question

Recent results and question

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Remark

• Open if F is amenable.

Recent results and question

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Remark

- Open if F is amenable.
- $H = F_2 : F_2 \wr \mathbb{Z}$ is not amenable!

Recent results and question

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ Hⁿ_b(Γ, E) = 0 ∀ n > 0, ∀ separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{j \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Remark

- Open if F is amenable.
- $H = F_2 : F_2 \wr \mathbb{Z}$ is not amenable!

Question

What algebraic property does this vanishing capture?

Main theorem

Theorem (Campagnolo, Fournier-Facio, Lodha, Moraschini '23)

 Γ has commuting cyclic conjugates $\implies H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Main theorem

Theorem (Campagnolo, Fournier-Facio, Lodha, Moraschini '23)

 Γ has commuting cyclic conjugates $\implies H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, \, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

•
$$[H, t^{p}H] = 1 \quad \forall 1 \le p \le m-1$$

Main theorem

Theorem (Campagnolo, Fournier-Facio, Lodha, Moraschini '23)

 Γ has commuting cyclic conjugates $\implies H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

•
$$[H, t^{p}H] = 1 \quad \forall 1 \le p \le m - 1 \quad (^{t}H = tHt^{-1});$$

Main theorem

Theorem (Campagnolo, Fournier-Facio, Lodha, Moraschini '23)

 Γ has commuting cyclic conjugates $\implies H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

•
$$[H, t^{p}H] = 1 \quad \forall 1 \le p \le m - 1 \quad (^{t}H = tHt^{-1});$$

• $[H, t^m] = 1$

Main theorem

Theorem (Campagnolo, Fournier-Facio, Lodha, Moraschini '23)

 Γ has commuting cyclic conjugates $\implies H_b^n(\Gamma, E) = 0 \quad \forall n > 0, \forall$ separable dual Banach Γ -module E.

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

•
$$[H, t^{p}H] = 1 \quad \forall 1 \le p \le m - 1 \quad (^{t}H = tHt^{-1});$$

•
$$[H, t^m] = 1$$
 (if $m = \infty, t^m = 1$).

Definitions : old and new

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

•
$$[H, t^{p}H] = 1$$
 $\forall 1 \le p \le m - 1$ $(^{t}H = tHt^{-1});$

•
$$[H, t^m] = 1$$
 (if $m = \infty, t^m = 1$).

Definition (c. c.)

 Γ has commuting conjugates if $\forall H \leq \Gamma$ f. g. $\exists t \in \Gamma$ s. t. $[H, {}^{t}H] = 1$.

Definitions : old and new

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

• $[H, t^{p}H] = 1$ $\forall 1 \le p \le m - 1$ $(^{t}H = tHt^{-1});$

•
$$[H, t^m] = 1$$
 (if $m = \infty, t^m = 1$).

Definition (c. c.)

 Γ has commuting conjugates if $\forall H \leq \Gamma$ f. g. $\exists t \in \Gamma$ s. t. $[H, {}^{t}H] = 1$.

Remark

• If Γ is f. g. and has c. c., then Γ is abelian.

Definitions : old and new

Definition (c. c. c.)

$$\label{eq:rescaled} \begin{split} & \Gamma \text{ has commuting cyclic conjugates if } \forall \, H \leq \Gamma \, \, \text{f. g.} \\ & \exists t \in \Gamma, m \in \mathbb{N}_{\geq 2} \cup \{\infty\} \, \, \text{s. t.} \end{split}$$

• $[H, t^{p}H] = 1$ $\forall 1 \le p \le m - 1$ $(^{t}H = tHt^{-1});$

•
$$[H, t^m] = 1$$
 (if $m = \infty, t^m = 1$).

Definition (c. c.)

 Γ has commuting conjugates if $\forall H \leq \Gamma$ f. g. $\exists t \in \Gamma$ s. t. $[H, {}^{t}H] = 1$.

Remark

- If Γ is f. g. and has c. c., then Γ is abelian.
- c. c. and c. c. c. pass to quotients and derived subgroups.

c. c. and bounded cohomology in the past

Theorem

Let Γ have c. c. Then

1 $scl(\Gamma) = 0$ (Kotschick '08);

c. c. and bounded cohomology in the past

Theorem

Let Γ have c. c. Then

- $scl(\Gamma) = 0$ (Kotschick '08);
- $H^2_b(\Gamma, \mathbb{R}) = 0$ (Fournier-Facio-Lodha '23).

c. c. and bounded cohomology in the past

Theorem

Let Γ have c. c. Then

- $scl(\Gamma) = 0$ (Kotschick '08);
- $H^2_b(\Gamma, \mathbb{R}) = 0$ (Fournier-Facio-Lodha '23).

Remark

 $2. \Rightarrow 1.$

Linear groups

$\Gamma = GL(R) = \cup_{j \ge 1} GL_j(R)$, where R is any ring with unit.

Linear groups

 $\Gamma = GL(R) = \bigcup_{j \ge 1} GL_j(R)$, where R is any ring with unit. Let $H \le \Gamma$ a f. g. subgroup. So $\exists j$ s. t. $H \le GL_j(R)$.

Linear groups

 $\Gamma = GL(R) = \bigcup_{j \ge 1} GL_j(R)$, where R is any ring with unit. Let $H \le \Gamma$ a f. g. subgroup. So $\exists j$ s. t. $H \le GL_j(R)$. Set

$$t: e_i \mapsto e_{j+i}, 1 \le i \le j,$$
$$e_{j+i} \mapsto e_i, 1 \le i \le j.$$

Linear groups

 $\Gamma = GL(R) = \bigcup_{j \ge 1} GL_j(R)$, where R is any ring with unit. Let $H \le \Gamma$ a f. g. subgroup. So $\exists j$ s. t. $H \le GL_j(R)$. Set

$$t: e_i \mapsto e_{j+i}, 1 \le i \le j,$$
$$e_{j+i} \mapsto e_i, 1 \le i \le j.$$

 $t \in GL_{2j}(R), ord(t) = 2$, and

$$[H, {}^{t}H] = 1, [H, t^{2}] = 1.$$

Linear groups

 $\Gamma = GL(R) = \bigcup_{j \ge 1} GL_j(R)$, where R is any ring with unit. Let $H \le \Gamma$ a f. g. subgroup. So $\exists j$ s. t. $H \le GL_j(R)$. Set

$$t: e_i \mapsto e_{j+i}, 1 \le i \le j,$$
$$e_{j+i} \mapsto e_i, 1 \le i \le j.$$

 $t \in GL_{2j}(R), ord(t) = 2$, and

$$[H, {}^{t}H] = 1, [H, t^{2}] = 1.$$

Similar for SL(R), Sp(R), O(R), SO(R), E(R),

Linear groups

 $H_b^n(GL(R), E) = 0 \quad \forall n > 0$ for any separable dual Banach Γ -module E. Similar for SL(R), Sp(R), O(R), SO(R), E(R),

Linear groups

 $\begin{array}{ll} H^n_b(GL(R),E)=0 & \forall n>0 \text{ for any separable dual Banach}\\ \Gamma\text{-module }E.\\ \text{Similar for }SL(R),Sp(R),O(R),SO(R),E(R),....\\ \text{Caution : NOT true in general for the individual groups}\\ GL_j(R),SL_j(R),Sp_{2j}(R),O_j(R),SO_j(R),E_j(R),....\\ \end{array}$

Linear groups

 $H_b^n(GL(R), E) = 0 \quad \forall n > 0$ for any separable dual Banach Γ -module E. Similar for SL(R), Sp(R), O(R), SO(R), E(R),Caution : NOT true in general for the individual groups $GL_j(R), SL_j(R), Sp_{2j}(R), O_j(R), SO_j(R), E_j(R),$

Theorem (Burger-Monod '99)

X an irreducible symmetric space of non-compact type of rank ≥ 3 , $\Gamma \leq Isom(X)$ a cocompact lattice. Then

- if X is not hermitian symmetric, then $H^2_b(\Gamma, \mathbb{R}) = 0$;
- if X is hermitian symmetric, then H²_b(Γ, ℝ) is one-dimensional, generated by the Kähler class.

Stable mapping class group

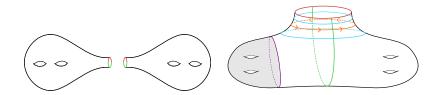
 $\Gamma = \Gamma_{\infty} = \cup_{g \ge 1} MCG(\Sigma_{g,1})$ (with compact support in the interior of $\Sigma_{g,1}$).

Stable mapping class group

 $\Gamma = \Gamma_{\infty} = \bigcup_{g \ge 1} MCG(\Sigma_{g,1})$ (with compact support in the interior of $\Sigma_{g,1}$). Let $H \le \Gamma$ a f. g. subgroup. So $\exists g$ s. t. $H \le MCG(\Sigma_{g,1})$.

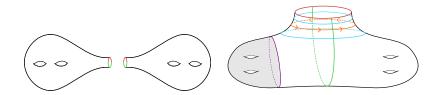
Stable mapping class group

 $\Gamma = \Gamma_{\infty} = \bigcup_{g \ge 1} MCG(\Sigma_{g,1})$ (with compact support in the interior of $\Sigma_{g,1}$). Let $H \le \Gamma$ a f. g. subgroup. So $\exists g$ s. t. $H \le MCG(\Sigma_{g,1})$.



Stable mapping class group

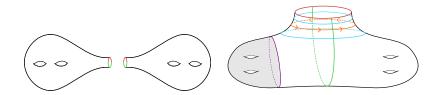
 $\Gamma = \Gamma_{\infty} = \bigcup_{g \ge 1} MCG(\Sigma_{g,1})$ (with compact support in the interior of $\Sigma_{g,1}$). Let $H \le \Gamma$ a f. g. subgroup. So $\exists g$ s. t. $H \le MCG(\Sigma_{g,1})$.



 $t \in MCG(\Sigma_{2g,1}), supp(H) \cap supp(^{t}H) = \emptyset, t^{2}|_{supp(H)} = id.$

Stable mapping class group

 $\Gamma = \Gamma_{\infty} = \bigcup_{g \ge 1} MCG(\Sigma_{g,1})$ (with compact support in the interior of $\Sigma_{g,1}$). Let $H \le \Gamma$ a f. g. subgroup. So $\exists g$ s. t. $H \le MCG(\Sigma_{g,1})$.



 $t \in MCG(\Sigma_{2g,1}), supp(H) \cap supp(^{t}H) = \emptyset, t^{2}|_{supp(H)} = id.$

 $\Longrightarrow [H, {}^tH] = 1, [H, t^2] = 1.$

Homeo-, diffeo- and symplectomorphisms groups with compact support

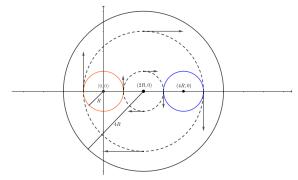
$$\Gamma = Sympl_c(\mathbb{R}^{2n}).$$

Homeo-, diffeo- and symplectomorphisms groups with compact support

$$\begin{split} &\Gamma = Sympl_c(\mathbb{R}^{2n}). \\ &\text{Let } H \leq \Gamma \text{ a f. g. subgroup. So } \exists R > 0 \text{ s. t. } supp(H) \subset B_R(0). \end{split}$$

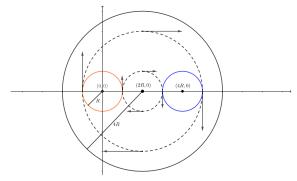
Homeo-, diffeo- and symplectomorphisms groups with compact support

$$\begin{split} & \Gamma = Sympl_c(\mathbb{R}^{2n}). \\ & \text{Let } H \leq \Gamma \text{ a f. g. subgroup. So } \exists R > 0 \text{ s. t. } supp(H) \subset B_R(0). \end{split}$$



Homeo-, diffeo- and symplectomorphisms groups with compact support

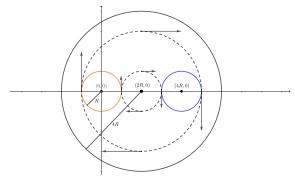
$$\begin{split} &\Gamma=Sympl_{c}(\mathbb{R}^{2n}).\\ &\text{Let }H\leq \Gamma \text{ a f. g. subgroup. So }\exists\,R>0 \text{ s. t. }supp(H)\subset B_{R}(0). \end{split}$$



 $t \in Sympl_{c}(\mathbb{R}^{2n}), supp(H) \cap supp(^{t}H) = \emptyset, t^{2}|_{supp(H)} = id.$

Homeo-, diffeo- and symplectomorphisms groups with compact support

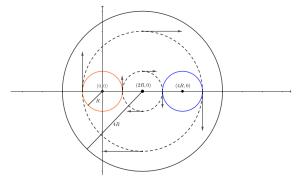
$$\begin{split} &\Gamma=Sympl_{c}(\mathbb{R}^{2n}).\\ &\text{Let }H\leq \Gamma \text{ a f. g. subgroup. So }\exists\,R>0 \text{ s. t. }supp(H)\subset B_{R}(0). \end{split}$$



 $t \in Sympl_{c}(\mathbb{R}^{2n}), supp(H) \cap supp(^{t}H) = \emptyset, t^{2}|_{supp(H)} = id.$ $\implies [H, {}^{t}H] = 1, [H, t^{2}] = 1.$

Homeo-, diffeo- and symplectomorphisms groups with compact support

$$\begin{split} &\Gamma=Sympl_{c}(\mathbb{R}^{2n}).\\ &\text{Let }H\leq \Gamma \text{ a f. g. subgroup. So }\exists\,R>0 \text{ s. t. }supp(H)\subset B_{R}(0). \end{split}$$



 $t \in Sympl_{c}(\mathbb{R}^{2n}), supp(H) \cap supp(^{t}H) = \emptyset, t^{2}|_{supp(H)} = id.$ $\implies [H, {}^{t}H] = 1, [H, t^{2}] = 1.$ Similar for $Sympl_{c}(\mathbb{R}^{2n} \times M)$, with M compact.

Proposition (C.-F.-F.-L.-M. '23)

 Γ has c. c. c. $\iff \forall H \leq \Gamma$ f. g. subgroup, \exists countable amenable group A, infinite transitive A-set X and homomorphism $f_H : H \wr_X A \to \Gamma$ s. t.

- $f_H|_H \colon H \to \Gamma$ is the inclusion, and
- Ker(f_H) is amenable.

Proposition (C.-F.-F.-L.-M. '23)

 Γ has c. c. c. $\iff \forall H \leq \Gamma$ f. g. subgroup, \exists countable amenable group A, infinite transitive A-set X and homomorphism $f_H : H \wr_X A \to \Gamma$ s. t.

- $f_H|_H \colon H \to \Gamma$ is the inclusion, and
- Ker(f_H) is amenable.

 $\mathsf{Gromov} \Longrightarrow H^*_b(H \wr_X A, E) \cong H^*_b(\mathit{Im}(f_H), E).$

Proposition (C.-F.-F.-L.-M. '23)

 Γ has c. c. c. $\iff \forall H \leq \Gamma$ f. g. subgroup, \exists countable amenable group A, infinite transitive A-set X and homomorphism $f_H : H \wr_X A \to \Gamma$ s. t.

- $f_H|_H \colon H \to \Gamma$ is the inclusion, and
- Ker(f_H) is amenable.

 $\mathsf{Gromov} \Longrightarrow H^*_b(H \wr_X A, E) \cong H^*_b(Im(f_H), E).$

$$\Gamma = \bigcup_{H \leq_{f.g.} \Gamma} H = \bigcup_{H \leq_{f.g.} \Gamma} Im(f_H).$$

Ideas of proof (2) Wreath products and bounded cohomology

Proposition (Monod '22, C.-F.-L.-M. '23)

If $\Gamma \cong H \wr_X A$ with

- *H*, *A* countable;
- A amenable;
- X countable set, $A \curvearrowright X$, all orbits Ax are infinite;

then for any separable dual Banach Γ -module E, the complex of cochains

$$0 \longrightarrow E^{\Gamma} \stackrel{0}{\longrightarrow} E^{\Gamma} \stackrel{id}{\longrightarrow} E^{\Gamma} \stackrel{0}{\longrightarrow} ..$$

computes $H_b^*(\Gamma, E)$.

$$\implies H^n_b(\Gamma, E) = 0 \quad \forall \ n > 0.$$

Vanishing modulus

Definition

Γ group, *E* Banach Γ-module, n > 0. The *n*-th vanishing modulus of Γ with coefficients in *E* is

$$\begin{aligned} \|H_b^n(\Gamma, E)\| &= \inf\{K \in [0, \infty] | \forall z \in Z_b^n(\Gamma, E), \exists b \in C_b^{n-1}(\Gamma, E)^{\Gamma} \\ \text{s. t. } d^{n-1}(b) &= z, \|b\|_{\infty} \leq K \|z\|_{\infty} \}. \end{aligned}$$

Vanishing modulus

Definition

Γ group, *E* Banach Γ-module, n > 0. The *n*-th vanishing modulus of Γ with coefficients in *E* is

$$\begin{aligned} \|H_b^n(\Gamma, E)\| &= \inf\{K \in [0, \infty] | \forall z \in Z_b^n(\Gamma, E), \exists b \in C_b^{n-1}(\Gamma, E)^{\Gamma} \\ \text{s. t. } d^{n-1}(b) &= z, \|b\|_{\infty} \leq K \|z\|_{\infty} \}. \end{aligned}$$

Remark

If $\|H_b^n(\Gamma, E)\| < \infty$, $H_b^n(\Gamma, E) = 0$.

Vanishing modulus

Definition

Γ group, *E* Banach Γ-module, n > 0. The *n*-th vanishing modulus of Γ with coefficients in *E* is

$$\begin{aligned} \|H_b^n(\Gamma, E)\| &= \inf\{K \in [0, \infty] | \forall z \in Z_b^n(\Gamma, E), \exists b \in C_b^{n-1}(\Gamma, E)^{\Gamma} \\ \text{s. t. } d^{n-1}(b) &= z, \|b\|_{\infty} \leq K \|z\|_{\infty} \}. \end{aligned}$$

Remark

If
$$\|H_b^n(\Gamma, E)\| < \infty$$
, $H_b^n(\Gamma, E) = 0$.

Proposition (C.-F.-F.-L.-M. '23)

I index set, Γ group, $n \ge 1$. Let $\{\Gamma_i\}_{i \in I}$ be a family of subgroups of Γ s. t. $\forall H \le \Gamma$ f. g., $\exists i_0 \in I$ s. t. $H \le \Gamma_{i_0}$. $\implies \|H_b^n(\Gamma, E)\| \le \sup_{i \in I} \|H_b^n(\Gamma_i, E)\| \forall E$ separable dual Banach Γ -module.

Vanishing modulus

Proposition (C.-F.-F.-L.-M. '23)

I index set, Γ group, $n \ge 1$. Let $\{\Gamma_i\}_{i\in I}$ be a family of subgroups of Γ s. t. $\forall H \le \Gamma$ f. g., $\exists i_0 \in I$ s. t. $H \le \Gamma_{i_0}$. $\implies \|H_b^n(\Gamma, E)\| \le \sup_{i\in I} \|H_b^n(\Gamma_i, E)\| \forall E$ separable dual Banach Γ -module.

Proposition (C.-F.-F.-L.-M. '23)

 $\forall n \geq 1 \ \exists K_n \in [0,\infty) \ s. \ t. \ \forall \Gamma \cong H \wr_X A \ with$

- *H*, *A* countable;
- A amenable;

• X countable set, $A \curvearrowright X$, all orbits Ax are infinite;

 \forall separable dual Banach Γ -module E, \forall normal amenable $N \leq H \wr_X A$,

 $\|H_b^n((H\wr_X A)/N,E)\| \leq K_n.$

Thank you for your attention !

Bounded cohomology of groups

Recent results

Theorem (Monod '22)

- Γ = F Thompson's group ⇒ H^{*}_b(Γ, E) = 0 ∀*>0, ∀
 separable dual Banach Γ-module E.
- $\Gamma = H \wr \mathbb{Z} = (\bigoplus_{n \in \mathbb{Z}} H) \rtimes \mathbb{Z} \Longrightarrow H_b^*(\Gamma, E) = 0 \quad \forall * > 0, \forall$ separable dual Banach Γ -module E.

Theorem (Monod-Nariman '23)

Let $j \geq 1, r \in \mathbb{N} \cup \{\infty\}$, and M be a closed manifold. If Γ is

- Homeo_c $(M \times \mathbb{R}^{j})$,
- Diffeo^r_c $(M \times \mathbb{R}^{j})$,
- Homeo_{c,0} $(M \times \mathbb{R}^j)$,
- $\bullet \text{ Diffeo}_{c,0}^r(M\times \mathbb{R}^j),$
- \implies $H^n_b(\Gamma, E) = 0 \quad \forall n > 0, \forall \text{ separable dual Banach } \Gamma\text{-module } E.$