Analysis Disguised as Topology: Poincaré Duality and the Hodge Star Map

Edward Bryden

University of Antwerp

November 10, 2025

Table of Contents

- Hodge Theory
- Real Homology
- Poincaré Duality
- 4 Hodge Star Operator

Adjoint of d

Recall

Let (M,g) be a smooth closed m-dimensional Riemannian manifold. Recall that we gave the adjoint of d the special name δ ; it is a map $\delta: \Omega^k(M) \to \Omega^{k-1}(M)$.

Adjoint of d

Lemma

Let (M,g) be a smooth closed m- dimensional Riemannian manifold, and let δ be the adjoint of the exterior derivative d. Then, $\delta^2=0$.

Proof.

By definition, for all $\omega \in \Omega^{k-2}(M)$ and $\eta \in \Omega^k(M)$ we have

$$\int_{M} g(\omega, \delta^{2} \eta) = \int_{M} g(d^{2} \omega, \eta) = 0.$$
 (1)

The Hodge Laplacian

Definition

Let (M,g) be a smooth closed m- dimensional Riemannian manifold. Then, we define the Hodge-Laplacian $\Delta: \Omega^k(M) \to \Omega^k(M)$ by

$$\Delta \sigma = (d + \delta)^2 \sigma = (d\delta + \delta d)\sigma. \tag{2}$$

If $\Delta \sigma = 0$, then we call σ an harmonic form.

Hodge Theory

Lemma

Let (M,g) be a smooth closed m-dimensional Riemannian manifold. Then, every element $w \in H^k(M)$ has a unique harmonic representative $\omega \in \Omega^k(M)$. Furthermore, we have that

$$\int_{M} g(\omega, \omega) = \min \left\{ \int_{M} g(\sigma, \sigma) : \sigma \in w \right\}.$$
 (3)

Consequences for the integral cohomology lattice?

Recall

Recall that we defined $H^1(M;\mathbb{Z})_{\mathbb{R}}$ to be those elements of $H^1_{dR}(M)$ whose representatives ω satisfy

$$\int_{\gamma} \omega \in \mathbb{Z} \forall \gamma \in \pi_1(M). \tag{4}$$

Observation

Since the topological properties of $H^1(M; \mathbb{Z})_{\mathbb{R}}$ are tied to $\pi_1(M)$, one may expect that the geometric properties of $H^1(M; \mathbb{Z})_{\mathbb{R}}$ are linked to the geometric properties of $\pi_1(M)$.

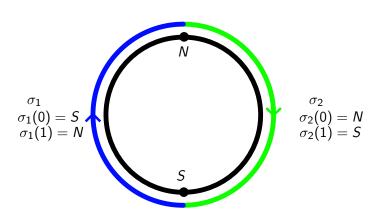
One-cycles

Definition

Let M be a smooth manifold, and let Δ^1 denote the 1-dimensional simplex [0,1]. Recall that given $\sigma:[0,1]\to M$ we set $\partial\sigma=\sigma(1)-\sigma(0)$. A real one cycle is a finite sum of $\sigma_i:[0,1]\to M$ with coefficients $r_i\in\mathbb{R}$ such that

$$\partial \sum_{i} r_{i} \sigma_{i} = \sum_{i} r_{i} \partial \sigma_{i} = 0.$$
 (5)

Sketch



Real k-cycles

Definition

Let M be a smooth manifold, and let Δ^k denote the k-dimensional simplex. A real k-cycle is a finite sum of $\sigma_i:\Delta^k\to M$ with coefficients $r_i\in\mathbb{R}$ such that

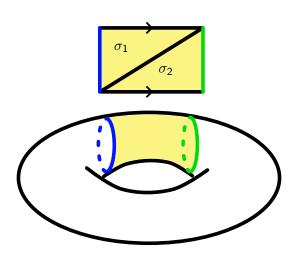
$$\partial \sum_{i} r_{i} \sigma_{i} = \sum_{i} r_{i} \partial \sigma_{i} = 0.$$
 (6)

Definition

Let M be a smooth manifold, and let c_1 and c_2 be two real one-cycles. We say that they are homologous if there is a real two-cycle σ such that

$$\partial \sigma = c_2 - c_1. \tag{7}$$

Sketch



Real Homology

Definition

Let M be a smooth manifold. Two real k-cycles c_1 and c_2 are said to be homologous if and only if there exists a k+1 cycle sigma such that $\partial \sigma = c_2 - c_1$. We denote the collection of all k-real-homology classes of M by $H_k(M;\mathbb{R})$

Homology-Cohomology Pairing

Definition

Let M be a closed smooth manifold. Given a map $f: \Delta^k \to M$ we get a corresponding map $\Omega^k(M) \to \mathbb{R}$ given by

$$\omega \mapsto \int_{\Delta^k} f^* \omega. \tag{8}$$

Lemma

This map descends to a map $I: H_k(M; \mathbb{R}) \times H^k_{dR}(M) \to \mathbb{R}$.

Proof.

This is an application of Stoke's theorem to the relevant definitions.

The Pairing is Non-degenerate

Theorem

Let M be a closed smooth oriented manifold. Then, the map $I: H_k(M; \mathbb{R}) \times H^k_{dR}(M) \to \mathbb{R}$ is non-degenerate in the following sense.

- For $a \in H_k(M; \mathbb{R})$ we have I(a, w) = 0 for all $w \in H^k_{dR}(M)$ if and only if a = 0.
- ② For $w \in H^k(M; \mathbb{R})$ we have I(a, w) = 0 for all $a \in H_k(M; \mathbb{R})$ if and only if w = 0.

Cohomology-Cohomology Pairing

Definition

Let M be a smooth closed oriented m-dimensional manifold. We get a pairing $I_{\wedge}: \Omega^k(M) \times \Omega^{m-k}(M) \to \mathbb{R}$ as follows:

$$I_{\wedge}(\eta,\omega) = \int_{M} \eta \wedge \omega. \tag{9}$$

Lemma

The pairing I_{\wedge} descends to $I_{\wedge}: H^k_{dR}(M) \times H^{m-k}_{dR}(M)$. Here it is non-degenerate.

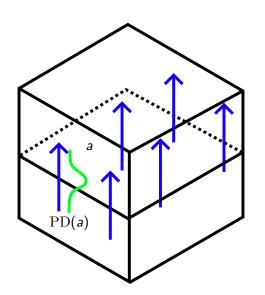
Poincaré Dual

Definition

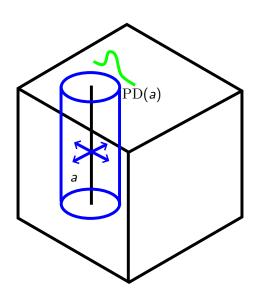
Let M be a smooth closed m-dimensional manifold, and consider $a \in H_k(M; \mathbb{R})$. The Poincaré Dual of a is the unique element $\operatorname{PD}(a) \in H^{m-k}_{dR}(M; \mathbb{R})$ such that for all $h \in H^k_{dR}(M)$ we have

$$I(a,h) = I_{\wedge} (PD(a),h). \tag{10}$$

Sketch



Sketch



Poincaré Dual

Definition

Let M be a smooth closed oriented m- dimensional manifold, and consider $w \in H^k_{dR}(M)$. The Poincaré Dual of w is the unique element $\operatorname{PD}(w)$ in $H_{m-k}(M;\mathbb{R})$ such that for all $h \in H_{m-k}(M;\mathbb{R})$ such that

$$I(PD(w), h) = I_{\wedge}(w, h). \tag{11}$$

Interior Product

Definition

Let (M,g) be a smooth m-dimensional Riemannian manifold,let $k \leq m$, let $p \in M$, and $\eta \in \bigwedge_{i=1}^k T_p^*M$. Then, for each $l \leq m-k$ we get a map $\psi \mapsto \eta \wedge \psi$ from $\bigwedge_{i=1}^l T_p^*M$ to $\bigwedge_{i=1}^{l+k} T_p^*M$. Define $\eta_{\lrcorner}: \bigwedge_{i=1}^{l+k} T_p^*M \to \bigwedge_{i=1}^l T_p^*M$ to be its adjoint: for all $\omega \in \bigwedge_{i=1}^{l+k} T_p^*M$ and all $\sigma \in \bigwedge_{i=1}^l T_p^*M$ we have

$$g(\eta_{\perp}(\omega), \sigma) = g(\omega, \eta \wedge \sigma).$$
 (12)

Hodge Star Map

Definition

Let (M,g) be a smooth oriented m-dimensional Riemannian manifold, and let vol_g denote its volume form. For any $k \leq m$ we define a map $\star: \Omega^k(M) \to \Omega^{m-k}(M)$ as follows. For $\sigma \in \Omega^k(M)$ for each $p \in M$ we set

$$(\star \sigma)_p = (\sigma_p) \lrcorner (\operatorname{vol}_g)_p. \tag{13}$$

Lemma

Let (M,g) be a smooth closed oriented m-dimesnional manifold. Then for each $p \in M$ and all $\omega, \sigma \in \bigwedge_{i=1}^k T_p^*M$ we have

$$g(\omega, \sigma) \cdot (\text{vol}_g)_p = \omega \wedge \star \sigma.$$
 (14)

By integrating over M, we get

$$\int_{M} g(\omega, \sigma) \operatorname{vol}_{g} = \int_{M} \omega \wedge \star \sigma.$$
 (15)

Proof.

Let $\{E_i\}_{i=1}^m$ be an orthonormal basis for T_pM , and let $\{\Theta_i\}_{i=1}^m$ be the dual basis for T_p^*M . Consider the element $\sigma = \Theta_1 \wedge \cdots \wedge \Theta_k$, and observe that $\sigma_{\lrcorner} \mathrm{vol}_g = \Theta_{k+1} \wedge \cdots \wedge \Theta_m$. This shows that for any ω we have

$$g(\omega, \Theta_1 \wedge \cdots \wedge \Theta_k) \cdot (\operatorname{vol}_g)_p = \omega \wedge \Theta_{k+1} \cdots \wedge \Theta_m. \tag{16}$$

Similar arguments work for all of the elements Θ_J for $J \in J(k, m)$.

Corollary

The map \star satisfies $\star^2 = (-1)^{k(m-k)} \mathrm{Id}$.

Isometry

Corollary

The map \star is an isometry.

Proof.

$$g(\star\omega,\star\omega)\operatorname{vol}_{g} = \star\omega \wedge \star^{2}\omega$$

$$= (-1)^{k(m-k)} \star\omega \wedge\omega$$

$$= (-1)^{k(m-k)}(-1)^{k(m-k)}\omega \wedge \star\omega$$

$$= g(\omega,\omega)\operatorname{vol}_{g}.$$
(17)
(18)
(19)

Length

Definition

Let (M,g) be a smooth Riemannian manifold, and let $\sigma:[0,1]\to M$ be a curve. Then, the length of the curve, denoted by $\mathrm{vol}_1([0,1],\sigma^*g)$ is given by

$$\int_0^1 \sqrt{g(\dot{\sigma}, \dot{\sigma})} dt. \tag{21}$$

Observation

The integrand is the area form on [0,1] induced by the metric σ^*g on [0,1].

Volume

Definition

Let (M,g) be a smooth closed m-dimensional Riemannian manifold, and let Δ^k denote the k-simplex Then, for $f:\Delta^k\to M$ we define $\operatorname{vol}_k(\Delta^k,f^*g)$ to be

$$\operatorname{vol}_{k}(\Delta^{k}, f^{*}g) = \int_{\Delta^{k}} \operatorname{vol}_{f^{*}g}$$
 (22)

Warning

The fully accurate definition is a bit more subtle

Mass

Definition

Let (M, g) be a smooth closed m-dimensional Riemannian manifold. Given a class $w \in H_k(M; \mathbb{R})$ we define its k-mass to be

$$\|w\|_{k} = \inf \left\{ \sum_{i} |r_{i}| \operatorname{vol}_{k}(\Delta^{k}, \sigma_{i}^{*}g) : \sum_{i} r_{i}\sigma_{i} \in w \right\}$$
 (23)

Lemma (Hebda)

Let (M,g) be a smooth closed oriented Riemannian manifold. For $a \in H^{m-1}_{dR}(M)$ and $\operatorname{PD}(a) \in H_1(M;\mathbb{R})$ we have

$$\|\operatorname{PD}(a)\|_1 \leq \operatorname{Vol}_{g}(M)^{\frac{1}{2}}C(m,1)\inf\left\{\left(\int_{M}g(\omega,\omega)\right)^{\frac{1}{2}}:\omega\in a\right\}$$
 (24)

Proof.

Let ω be the harmonic form representing a. Then, for all closed 1-forms ϕ we have

$$I(PD(a), \phi) = I_{\wedge}(\omega, \phi) = \int_{M} \omega \wedge \phi.$$
 (25)

This RHS is equal to

$$\pm \int_{M} g(\star \omega, \phi). \tag{26}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・釣な○

Proof.

Taking absolute values, we get

$$|I(\operatorname{PD}(a), \phi)| \le \int_{M} |\star \omega|_{g} |\phi|$$
 (27)

$$\leq \|\phi\|_{L^{\infty}} \int_{M} |\star \omega| \tag{28}$$

$$\leq \|\phi\|_{L^{\infty}} \operatorname{vol}_{g}(M)^{\frac{1}{2}} \left(\int_{M} g(\star \omega, \star \omega) \right)^{\frac{1}{2}}.$$

$$= \|\phi\|_{L^{\infty}} \operatorname{vol}_{g}(M)^{\frac{1}{2}} \left(\int_{M} g(\omega, \omega) \right)^{\frac{1}{2}}. \tag{30}$$

(29)

Proof.

On the otherhand, by the properties of mass, we have

_

(31)

 $\|PD(a)\|_1 \le C(m,1) \sup \{|I(PD(a),\phi)| : \|\phi\|_{L^{\infty}} \le 1\}.$