Riemannian manifolds and the Sobolev-Neumann constants

Edward Bryden

University of Antwerp

November 4, 2025

Table of Contents

Riemannian basics

2 Analysis

Riemannian Manifolds

Definition

Let M be a smooth manifold. Then, a smooth section of the vector bundle $T^*M \otimes T^*M$, say g, such that

- of for all $p \in M$ and $v \in T_pM$ we have $g_p(v,v) \ge 0$, with equality if and only if v=0:
- of for all $p \in M$ and $v, w \in T_pM$ we have $g_p(v, w) = g_p(w, v)$, then we call g a Riemannian metric on M, and call the tuple (M, g) a

Riemannian manifold.

Metrics Exist

Lemma

Let M be a smooth manifold. Then there is always at least one Riemannian metric on M; actually there are in general many.

Proof.

- Locally we can pull back the Riemannian metric arising from coordinates.
- Stitch these locally define metrics together using a partition of unity.

Connections on manifolds

Definition

Let M be a smooth manifold. A Koszul connection, say ∇ , is a bi-linear map $\nabla: \Gamma(TM) \times (TM) \to \Gamma(TM)$ which satisfies the following two additional properties: for any $X, Y \in \Gamma(TM)$ and smooth function $f: M \to \mathbb{R}$ we have

- $and \nabla_X(fY) = X(f)Y + f\nabla_XY.$

Fundamental Theorem

Theorem

Let (M,g) be a Riemannian manifold. Then there exists a unique Koszul connection on M, say ∇ , which for all $X,Y,Z\in\Gamma(X)$ satisfies

- $and \nabla_X Y \nabla_Y X = [X, Y].$

This unique connection is called the Levi-Civita connection on the Riemannian manifold (M, g).

Gradients of functions

Definition

Let (M,g) be a Riemannian manifold, and let $f:M\to\mathbb{R}$ be a smooth function on M. Given any $p\in M$ we define the gradient of f at p, denoted $(\nabla f)_p$ to be the unique vector field such that for all $w\in \mathcal{T}_pM$ we have

$$g_p(w,(\nabla f)_p)=df_p(w). \tag{1}$$

This defines a smooth vectorfield $p \mapsto (\nabla f)_p$, which is called the gradient field, or just gradient, of f.

Definition

Let M be an oriented smooth manifold, and let g be Riemannian metric on M. Then, we may get a unique non-vanishing top-dimensional form on M as follows. For each p, let $\{E_i\}_1^m$ be a positively oriented orthonormal basis of T_pM with respect to g_p , and set θ^i to be the dual coverctor of E_i , that is we have $\theta^i(E_j) = \delta^i_j$, the Kronecker delta. Set

$$\operatorname{Vol}_{g} = \theta^{1} \wedge \cdots \wedge \theta^{m}.$$

Definition

Let (M,g) be an oriented smooth m-dimensional Riemannian manifold, and let Σ be a smooth m-1 dimensional embedded submanifold of M. If the orientation on M induces and orientation on Σ , then we call Σ and oriented surface, or a two-sided surface. In this case, $g|_{\Sigma}$ defines a unique m-1 form on Σ , and we will denote it by A_{Σ} , or just A.

Lemma

Let (M,g) be an oriented smooth m- dimensional Riemannian manifold, and suppose $\Sigma\subset M$ is an embedded m-1-dimensional submanifold of M such that there is an open region $\Omega\subset M$ with the property that $\partial\Omega=\Sigma$. Then, the surface Σ is oriented.

Proof.

There exists a vectorfield ν on $\partial\Omega$ called the inward pointing normal. This orients $\partial\Omega=\Sigma$.

Definition

Let (M,g) be an oriented smooth m-dimensional Riemannian manifold, and let $\Sigma \subset M$ be an embedded oriented m-1 dimensional surface.

Then, we set $Area(\Sigma) = \int_{\Sigma} 1A_{\Sigma}$.

The $W^{1,1}$ -norm

Definition

Let (M,g) be a Riemannian manifold, and let $f:M\to\mathbb{R}$ be a smooth function on M. Then, we set

$$||f||_{W^{1,1}(M,g)} = \int_{M} \sqrt{g(\nabla f, \nabla f)} + |f| \text{Vol.}$$
 (2)

Set $W^{1,1}(M,g)$ to be the closure of $C^\infty(M)$ under the norm $\|\cdot\|_{W^{1,1}(M,g)}$.

The Sobolev-Neumann constants

Definition

Let (M,g) be an m-dimensional Riemannian manifold, let ∇ be its Levi-Civita connection, and let $\alpha \in \left[1,\frac{m}{m-1}\right]$. Then, we define $SN_{\alpha}(M,g)$ to be the following constant:

$$SN_{lpha}(M,g) = \inf \left\{ rac{\int_{M} \sqrt{g(
abla f,
abla f)}}{\min_{k \in \mathbb{R}} \left(\int_{M} |f - k|^{lpha}
ight)^{rac{1}{lpha}}} : f \in W^{1,1}(M,g)
ight\}$$

The Isoperimetric-Neumann constants

Definition

Let (M,g) be a smooth oriented m dimensional Riemannian manifold, and let $\alpha \in [1, \frac{m}{m-1}]$. We define $IN_{\alpha}(M,g)$ as follows:

$$\mathit{IN}_{lpha}(\mathit{M},g) = \inf \left\{ rac{\operatorname{Area}(\partial \Omega)}{\min \left\{ |\Omega|^{rac{1}{lpha}}, |\Omega^c|^{rac{1}{lpha}}
ight\}} : \Omega \subset \subset \mathit{M}
ight\}$$

SN vs IN

Lemma

Let (M,g) be a smooth oriented m dimensional Riemannian manifold. Then, we have that $SN_1(M,g) = IN_1(M,g)$.

Proof.

- One can show that for each $f \in C^{\infty}$ with $||f||_{W^{1,1}(M,g)} < \infty$; there is a $k \in \mathbb{R}$ such that $M_+(k) = \{f > k\}$ and $M_-(k) = \{f < k\}$ satisfy $\max\{|M_+(k)|, |M_-(k)|\} \leq \frac{|M|}{2}$;
- **③** For t > 0 we have $\{(f k) > t\} \subset M_+(k)$, and $(f k)^{-1}\{t\} = \partial\{(f k) > t\};$
- $\int_0^\infty \text{Area}(f-k)^{-1} \{t\} dt \ge I N_1 \int_0^\infty |\{(f-k) > t\}| dt \text{ which in turn is } \int_{\{(f-k) > 0\}} (f-k).$