Rational ellipticity of Riemannian manifolds

Xiaoyang Chen

Tongji University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Definition: The *n*-th homotopy group of a topological space X is the set of homotopy classes of maps from the *n*-sphere to X, with a group structure, and is denoted $\pi_n(X)$.

Theorem (Serre)

1. The homotopy groups of an odd dimensional sphere S^n are torsion except in dimension n;

2. The homotopy groups of an even dimensional sphere S^n are torsion except in dimension n and 2n - 1.

We look at $\pi_i(X) \bigotimes \mathbb{Q}$. There is a big theory to study it using differential forms, e.g., Sullivan's miminal model theory.

relate rational homotopy group to geometry

Conjecture 1 (Bott-Grove-Halperin): A compact simply connected Riemannian manifold M with nonnegative sectional curvature is rationally elliptic.

Conjecture 2 (Paternain): A compact simply connected Riemannian manifold M with completely integrable geodesic flow is rationally elliptic.

Rational ellipticity

A simply connected manifold M is said to be rationally elliptic if and only if it has finite dimensional rational homotopy groups, i.e., all but finitely many homotopy groups of M are finite.

Examples of rational elliptic manifolds: 1. Compact simply connected homogeneous spaces and cohomogeneity one manifolds.

2. $M = D(B_1) \cup_E D(B_0)$ is rationally elliptic if and only if E is. (Grove-Halperin)

Properties of rational elliptic manifolds:

1. *M* being rationally elliptic is equivalent to polynomial growth of the sequence of Betti numbers of its based loop space ΩM , i.e, $\sum_{i=0}^{k-1} dim H_i(\Omega M)$ grows polynomially when $k \to \infty$. (by Sullivan's miminal model theory)

2. *M* has nonnegative Euler characteristic number; (Felix-Halperin-Thomas)

3. $dimH_*(M, \mathbb{Q}) \leq 2^n$. (Felix-Halperin-Thomas)

4. If dim M = 4, then M is homeomorphic to $\mathbb{S}^4, \mathbb{CP}^2, \mathbb{S}^2 \times \mathbb{S}^2, \mathbb{CP}^2 \pm \mathbb{CP}^2$. (Paternain)

Theorem (Grove, Wilking, Yeager, 2019): Bott-Grove-Halperin's conjecture is true when M supports an isometric action with principal orbits of codimension two.

Remark: Based on an iterated use of the Rauch comparison theorem for Jacobi fields, an estimate for the Betti numbers of ΩM for manifolds with $0 < \delta \leq secM \leq 1$ was derived by Berger and Bott. Although the estimate is given in terms of the pinching constant δ , its growth rate is exponential.

Theorem (Chen) : Let (M,g) be a *n*-dimensional compact simply connected real analytic Riemannian manifold that has entire Grauert tube, then M is rationally elliptic.

Here (M, g) is said to be real analytic if M is a real analytic manifold with a real analytic Riemannian metric g. Then there is a unique adapted complex structure defined on $T^R M = \{v \in TM | g(v, v) < R^2\}$ for some R > 0. When $R = \infty$, then M is said to have entire Grauert tube. It was shown by Lempert and Szöke that a Riemannian manifold with entire Grauert tube has nonnegative sectional curvature.

All known manifolds with entire Grauert tube are obtained by Aguilars construction: starting with a compact Lie group with a bi-invariant metric, or the product of such a group with Euclidean space, one takes the quotient by some group of isometries acting freely. It was conjectured by Hopf that the Euler characteristic number of a compact Riemannian manifold with nonnegative sectional curvature is nonnegative. The following corollary settles this conjecture under the stronger assumption that M has entire Grauert tube.

Corollary: Let M be a compact Riemannian manifold with entire Grauert tube. Then M has nonnegative Euler characteristic number.

Proof: If M has finite fundamental group, then its universal cover \widetilde{M} with the induced Riemannian metric also has entire Grauert tube. Then \widetilde{M} is rationally elliptic. Hence the Euler characteristic number of \widetilde{M} is nonnegative. Then M has nonnegative Euler characteristic number. If M has infinite fundamental group, as M has nonnegative sectional curvature, then the Euler characteristic number of M is zero.

A related conjecture proposed by Totaro predicts that a compact Riemannian manifold M with nonnegative sectional curvature has a good complexification, i.e., M is diffeomorphic to a smooth affine algebraic variety U over the real number such that the inclusion $U(\mathbb{R}) \to U(\mathbb{C})$ is a homotopy equivalence. The Euler characteristic number of a compact manifold which has a good complexification is also nonnegative. Also, a conjecture by Burns predicts that for every compact Riemannian manifold M with entire Grauert tube, the complex manifold TM is an affine algebraic variety in a natural way. If this is correct, the complex manifold TM would be a good complexification of M in the above sense. Both conjectures of Totaro and Burns are still open.

Approach via Morse theory

Let *M* be a *n*-dimensional compact manifold endowed with a Riemannian metric *g*. For $x \in M$ and each T > 0, let

$$D_{\mathcal{T}} := \{ v \in T_x M | g(v, v) \leq T^2 \}$$

be the disk of radius T in $T_x M$. Define the counting function $n_T(x, y)$ by

$$n_T(x,y) := \sharp((exp_x)^{-1}(y) \cap D_T).$$

In other words, $n_T(x, y)$ counts the number of geodesic arcs joining x to y with length $\leq T$.

Theorem (Berger and Bott):

$$\int_{M} n_{T}(x,y) dy = \int_{0}^{T} d\sigma \int_{\mathbb{S}} \sqrt{\det(g(J_{j}(\sigma), J_{k}(\sigma)))_{j,k=1,2,\cdots,n-1}} d\theta,$$

where $J_j, j = 1, 2, \cdots, n-1$ are Jacobi fields along the unique geodesic γ determined by $\theta \in \mathbb{S}$ with initial conditions

$$J_j(0) = 0$$
$$J'_j(0) = v_j.$$

Theorem (Gromov): Let M be a n-dimensional compact simply connected manifold endowed with a Riemannian metric g, then

$$\sum_{j=0}^{k-1} dim H_j(\Omega M) \leq \frac{1}{Vol_g(M)} \int_M n_{Ck}(x, y) dy.$$

Vertical and horizontal subbundles

Let $\pi : TM \to M$ be the canonical projection, i.e., if $\theta = (x, v) \in TM$, then $\pi(\theta) = x$. There exists a canonical subbundle of TTM called the vertical subbundle whose fiber at θ is given by the tangent vectors of curves $\sigma : (-\epsilon, \epsilon) \to TM$ of the form: $\sigma(t) = (x, v + t\omega)$, where $\omega \in T_xM$. In other words,

$$V(heta) = ker((\pi_*)_{ heta}).$$

Suppose that M is endowed with a Riemannian metric g. We shall define the connection map

$$K: TTM \to TM$$

as follows:

let $\xi \in T_{\theta}TM$ and $z : (-\epsilon, \epsilon) \to TM$ be an adapted curve to ξ , that is, with initial conditions as follows:

$$z(0) = \theta$$
$$z'(0) = \xi.$$

such a curve gives rise to a curve $\alpha : (-\epsilon, \epsilon) \to M, \alpha := \pi \circ z$ and a vector field Z along α , equivalently, $z(t) = (\alpha(t), Z(t))$.

Define

$$\mathcal{K}_{ heta}(\xi) := (
abla_{lpha} Z)(0) = \lim_{t o 0} rac{(P_t)^{-1} Z(t) - Z(0)}{t},$$

where $P_t : T_x M \to T_{\alpha(t)} M$ is the linear isomorphism defined by the parallel transport along α . The horizontal subbundle is the subbundle of *TTM* whose fiber at θ is given by

$$H(\theta) = ker K_{\theta}.$$

Another equivalent way of constructing the horizontal subbundle is by means of the horizontal lift

$$L_{\theta}: T_{x}M \to T_{\theta}TM,$$

which is defined as follows: let $\theta = (x, v)$. Given $\omega \in T_x M$ and $\alpha : (-\epsilon, \epsilon) \to M$ an adapted curve of ω , i.e., $\alpha(0) = x, \alpha'(0) = \omega$. Let Z(t) be the parallel transport of v along α and $\sigma : (-\epsilon, \epsilon) \to TM$ be the curve $\sigma(t) = (\alpha(t), Z(t))$. Then

$$L_{\theta}(w) = \sigma'(0) \in T_{\theta}TM.$$

 K_{θ} and L_{θ} have the following properties:

$$(\pi_*)_{ heta} \circ L_{ heta} = Id$$

 $K_{ heta} \circ i_* = Id,$

where $i: T_X M \to TM$ is the inclusion map. Moreover,

$$T_{\theta}TM = H(\theta) \oplus V(\theta)$$

and the map $j_{\theta}: T_{\theta}TM \to T_{x}M \times T_{x}M$ given by

$$j_{\theta}(\xi) = ((\pi_*)_{\theta}(\xi), K_{\theta}(\xi))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a linear isomorphism.

For each $\theta \in TM$, there is a unique geodesic γ_{θ} in M with initial condition θ . Let $\xi \in T_{\theta}TM$ and $z : (-\epsilon, \epsilon) \to TM$ be an adapted curve to ξ , that is, with initial conditions as follows:

 $z(0) = \theta$ $z'(0) = \xi.$

Then the map $(s, t) \mapsto \pi \circ \phi_t(z(s))$ gives rise to a variation of γ_{θ} . Here $\pi : TM \to M$ is the projection map and ϕ_t is the geodesic flow of TM. The curves $t \mapsto \pi \circ \phi_t(z(s))$ are geodesics and therefore the corresponding variational vector fields $J_{\xi} := \frac{\partial}{\partial s}|_{s=0}\pi \circ \phi_t(z(s))$ is a Jacobi field with initial conditions

$$J_{\xi}(0) = (\pi_*)_{ heta}(\xi)$$

 $J'_{\xi}(0) = \mathcal{K}_{ heta}(\xi).$

Adapted complex structure on the tangent bundle

For $\tau \in \mathbb{R}$ denote by $N_{\tau} : TM \to TM$ the smooth mapping defined by multiplication by τ in the fibers. If $\gamma : \mathbb{R} \to M$ is a geodesic, define an immersion $\phi_{\gamma} : \mathbb{C} \to TM$ by

$$\phi_{\gamma}(\sigma + i\tau) = N_{\tau}\gamma'(\sigma).$$

The images of $\mathbb{C} \setminus \mathbb{R}$ under the mapping ϕ_{γ} defines a smooth foliation of $TM \setminus M$ by surfaces. Moreover, each leaf has complex structure that it inherits from \mathbb{C} via ϕ_{γ} .

Given R > 0, put

$$T^R M = \{ v \in TM | g(v, v) < R^2 \}.$$

A smooth complex structure on $T^R M$ will be called adapted if the leaves of the foliation with the complex structure inherited from \mathbb{C} are complex submanifolds.

Theorem: (Lempert and Szöke, Guillemin and Stenzel) Let M be a compact real analytic manifold equipped with a real analytic metric g. Then there exists some R > 0 such that $T^R M$ carries a unique adapted complex structure.

When the adapted complex structure is defined on the whole tangent bundle, i.e. $R = \infty$, then M is said to have entire Grauert tube. It was shown by Lempert and Szöke that a Riemannian manifold with entire Grauert tube has nonnegative sectional curvature.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The adapted complex structure on $T^R M \setminus M$ can be described as follows. For this purpose let $\theta \in TM \setminus M$ and $x = \pi(\theta)$, where $\pi : TM \to M$ is the projection map. Let γ be a geodesic determined by θ . Choose tangent vectors $v_1, v_2, \cdots, v_{n-1}$ such that $v_1, v_2, \cdots, v_{n-1}, v_n := \frac{\gamma'(0)}{|\gamma'(0)|}$ form an orthonormal basis of $T_x M$.

Denote L_{θ} the leaf of the foliation \mathcal{F} passing through θ . A vector $\overline{\xi} \in T_{\theta}TM$ determines a vector field ξ (we call it parallel vector field) along L_{θ} by defining it to be invariant under two semi-group actions. Namely ξ is invariant under N_{τ} and the geodesic flow. For this parallel field ξ , we get that $\xi|_{\mathbb{R}}$ is a Jacobi field along γ .

Now choose a set of vectors $\bar{\xi}_1, \bar{\xi}_2, \cdots, \bar{\xi}_n, \bar{\eta}_1, \bar{\eta}_2, \cdots, \bar{\eta}_n \in T_{\theta}TM$ satisfying

$$(\pi_*)_{ heta}(ar{\xi}_j) = v_j, \ \mathcal{K}_{ heta}(ar{\xi}_j) = 0$$

 $(\pi_*)_{ heta}(ar{\eta}_j) = 0, \ \mathcal{K}_{ heta}(ar{\eta}_j) = v_j.$

Let $\xi_1, \xi_2, \dots, \xi_n, \eta_1, \eta_2, \dots, \eta_n$ be the parallel vector fields along L_{θ} determined by $\overline{\xi}_j$ and $\overline{\eta}_j$. There are smooth real valued functions ϕ_{jk} defined on $\mathbb{R} \setminus S_1$ (S_1 is a discrete set) such that

$$\eta_k|_{\mathbb{R}} = \sum_{j=1}^n \phi_{jk} \xi_j|_{\mathbb{R}}.$$

The functions ϕ_{jk} have meromorphic extension f_{jk} over the domain

$$D = \{\sigma + i\tau \in \mathbb{C} | |\tau| < \frac{R}{\sqrt{g(\theta, \theta)}}\}$$

such that for each j, k, the poles of f_{jk} lies on \mathbb{R} and the matrix $Im(f_{jk})|_{D\setminus\mathbb{R}}$ is invertible.

Let $(e_{jk}) = (Imf_{jk}(i))^{-1}$. Then the complex structure J satisfies

$$J\overline{\xi}_h = \sum_{k=1}^n e_{kh} \times [\overline{\eta}_k - \sum_{j=1}^n \operatorname{Ref}_{jk}(i)\overline{\xi}_j].$$

Remark: Because $\xi_1 | \mathbb{R}, \xi_2 | \mathbb{R}, \dots, \xi_{n-1} | \mathbb{R}, \eta_1 | \mathbb{R}, \eta_2 | \mathbb{R}, \dots, \eta_{n-1} | \mathbb{R}$ are normal Jacobi fields, while $\xi_n | \mathbb{R}, \eta_n | \mathbb{R}$ are tangential Jacobi fields, for $1 \leq j, k \leq n-1$, we have

$$\phi_{nk} = \phi_{jn} \equiv 0$$

 $f_{nk} = f_{jn} \equiv 0$
 $e_{nk} = e_{jn} \equiv 0$

Consider the *n*-tuples

$$\Xi = (\xi_1, \xi_2, \cdots, \xi_n), \ H = (\eta_1, \eta_2, \cdots, \eta_n)$$

and holomorphic *n*-tuples

$$\Xi^{1,0} = (\xi_1^{1,0}, \xi_2^{1,0}, \cdots, \xi_n^{1,0}), \ H^{1,0} = (\eta_1^{1,0}, \eta_2^{1,0}, \cdots, \eta_n^{1,0}),$$

where $\xi_j^{1,0} = \frac{1}{2}(\xi_j - iJ\xi_j)$ and J is the adapted complex structure.

Then we have

$$H(\sigma) = \Xi(\sigma)f(\sigma)$$
$$H^{1,0}(\sigma + i\tau) = \Xi^{1,0}(\sigma + i\tau)f(\sigma + i\tau)$$
$$f(\sigma + i\tau) = (f_{jk}(\sigma + i\tau)), \ \sigma \in \mathbb{R} \setminus S_1, \ |\tau| < \frac{R}{\sqrt{g(\theta, \theta)}}.$$

Theorem (Lempert and Szöke):

1. The vectors $\xi_1^{1,0}, \xi_2^{1,0}, \dots, \xi_n^{1,0}$ are linearly independent over \mathbb{C} on $D \setminus \mathbb{R}$. The same is true for the vectors $\eta_1^{1,0}, \eta_2^{1,0}, \dots, \eta_n^{1,0}$.

2. The 2*n* vectors ξ_j , η_k are linearly independent in points $\sigma + i\tau \in D \setminus \mathbb{R}$.

3. The matrix valued meromorphic functions $f(\sigma + i\tau)$ is symmetric (as a matrix) and satisfies

$$f(0) = 0, f'(0) = Id.$$

Moreover, if $\sigma + i\tau \in D$, $\tau > 0$, then $Imf(\sigma + i\tau)$ is a symmetric, positive definite matrix.

Growth rate of counting functions

Let *M* be a *n*-dimensional compact manifold endowed with a Riemannian metric *g*. For $x \in M$ and each T > 0, let

$$D_T := \{v \in T_x M | g(v, v) \le T^2\}$$

be the disk of radius T in $T_x M$. Define the counting function $n_T(x, y)$ by

$$n_T(x,y) := \sharp((exp_x)^{-1}(y) \cap D_T).$$

In other words, $n_T(x, y)$ counts the number of geodesic arcs joining x to y with length $\leq T$.

Theorem (Berger and Bott):

$$\int_{M} n_{T}(x,y) dy = \int_{0}^{T} d\sigma \int_{\mathbb{S}} \sqrt{\det(g(J_{j}(\sigma), J_{k}(\sigma)))_{j,k=1,2,\cdots,n-1}} d\theta,$$

where $J_j, j = 1, 2, \cdots, n-1$ are Jacobi fields along the unique geodesic γ determined by $\theta \in \mathbb{S}$ with initial conditions

$$J_j(0) = 0$$
$$J'_j(0) = v_j.$$

Theorem (Gromov): Let M be a n-dimensional compact simply connected manifold endowed with a Riemannian metric g, then

$$\sum_{j=0}^{k-1} dim H_j(\Omega M) \leq \frac{1}{Vol_g(M)} \int_M n_{Ck}(x, y) dy.$$

Now suppose that M has entire Grauert tube. we will derive that $\int_M n_T(x, y) dy$ has polynomial growth and hence M is rationally elliptic.

Crucial observations:

1. Let $f_1 = (f_{jk}), j, k = 1, 2, \dots, n-1$. Then there exists a discrete subset $S_2 \subset \mathbb{R}$ such that for $\sigma \in \mathbb{R} \setminus S_2$, we have

$$det(g(J_j(\sigma), J_k(\sigma))_{j,k=1,2,\cdots,n-1} = \frac{1}{det((-f_1^{-1})'(\sigma))}$$

2. $G(\zeta) := -f^{-1}(\zeta)$ is a matrix valued meromorphic function on \mathbb{C} whose pole lies in a discrete subset of \mathbb{R} and $ImG(\zeta)$ is positive definite for $\zeta = \sigma + i\tau \in \mathbb{C}^+$, where \mathbb{C}^+ is the upper half plane.

Theorem (Fatou): Let F be an $n \times n$ matrix valued holomorphic function on the upper half plane $\mathbb{C}^+ = \{\xi \in \mathbb{C} | Im \zeta > 0\} \cup (\mathbb{R} \setminus P)$, where P is a discrete subset of \mathbb{R} consisting of poles of F. Suppose that for every $\zeta \in \mathbb{C}^+$, $ImF(\zeta)$ is a symmetric, positive definite matrix, whereas for $\zeta \in \mathbb{R} \setminus P$, $ImF(\zeta) = 0$. Then there is an $n \times n$ symmetric matrix $\mu = (\mu_{jk})$ whose entries are real valued, signed Borel measures on \mathbb{R} such that

 $1^\circ~\mu_{jk}$ does not have mass on any interval which does not contain a pole of F;

$$2^{\circ} \int_{-\infty}^{+\infty} \frac{|d\mu_{jk}(t)|}{1+t^2} < \infty;$$

3° μ is positive semidefinite in the sense that for any $(\omega_j) \in \mathbb{R}^n$, the measure $\sum \omega_j \omega_k \mu_{jk}$ is nonnegative;

$$4^\circ\; {\sf F}'(\zeta)={\sf A}+rac{1}{\pi}\int_{-\infty}^{+\infty}rac{d\mu(t)}{(\zeta-t)^2},\; \zeta\in\mathbb{C}^+,$$

where A is a symmetric, positive semidefinite constant matrix. In fact, we have $A = \lim_{\tau \to +\infty} \frac{ImF(i\tau)}{\tau}$ and $d\mu(\sigma)$ is the weak limit of $ImF(\sigma + i\tau)$ as $\tau \to 0^+$.

Applying the above Fatou's representation theorem to the matrix valued holomorphic function $(-f_1^{-1})$ on the upper half plane, we get

$$(-f_1^{-1})'(\zeta) = A + rac{1}{\pi} \int_{-\infty}^{+\infty} rac{d\mu(t)}{(\zeta - t)^2}, \ \zeta \in \mathbb{C}^+,$$

As μ does not have mass on any interval which does not contain a pole of $-f_1^{-1}$. This yields that

$$(-f_1^{-1})'(\sigma) = A + rac{1}{\pi}\sum_j rac{\mu(t_j)}{(\sigma-t_j)^2}, \ \sigma \in \mathbb{R} \setminus \{t_1, t_2, \cdots\},$$

where $\{t_1, t_2, \cdots\}$ are poles of $-f_1^{-1}$.

Key observation: As f(0) = 0, we see that 0 is pole of $-f_1^{-1}$. Moreover, we have

$$\mu(0) = \pi I d$$

Then

$$(-f_1^{-1})'(\sigma)=\frac{1}{\sigma^2}Id+B,$$

where $B = A + \frac{1}{\pi} \sum_{t_j \neq 0} \frac{\mu(t_j)}{(\sigma - t_j)^2}$ is positive semidefinite. Then we get

$$\frac{1}{\det((-f_1^{-1})'(\sigma))} \le \sigma^{2n-2}$$

So

$$\int_M n_T(x,y) dy \le p(T),$$

where p(T) is a polynomial of degree at most *n*. It follows that *M* is rationally elliptic.

approach via rational homotopy theory

Theorem (Grove-Halperin): $M = D(B_1) \cup_E D(B_0)$ is rationally elliptic if and only if E is.

Double disk conjecture (Grove): A compact simply connected manifold with nonnegative sectional curvature is a double disk bundle, i.e, it is obtained as the union of the total spaces of two disk bundles via their common boundary.

Our observation: The total space of an open book decomposition is rationally elliptic if its page is a disk bundle over a rationally elliptic manifold.

An open book decomposition of M^n consists of a codimension-two submanifold N^{n-2} , called the binding, and a fibration $\pi: M \setminus N \to S^1$. The fibres are called the pages.

Question: Can we construct such a special open book decomposition on the sphere bundle of a compact simply connected manifold with nonnegative sectional curvature?

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(の)