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Gromov norm

Definition

Let M be a connected, closed, oriented topological manifold. For any
singular homology class α ∈ Hk(M,R), the Gromov norm ∥α∥ of α is
defined by

∥α∥ := inf

{∑
i∈I

|ai |

∣∣∣∣∣∑
i∈I

aiσi is a k cycle representing α

}

In particular, the Gromov norm of the fundamental class [M] is called the
simplicial volume of M, which we denote by ∥M∥.
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A rough interpretation of simplicial volume

Intuitively, the fundamental class of M can be thought of as a
triangularization of M.

For any p, q ∈ Z+, we say that M can be triagularized by a total of
p/q top dimensional simplices if a q-fold cover of M can be
triagularized using a total of p top dimensional simplices.

∥M∥ can be thought of as the

inf

{
m ∈ R+

∣∣∣∣∣ M can be triagularized by a total of

m top dimensional simplices.

}
.

In particular, if ∥M∥ = 0, this means that M can be triangularized as
efficiently as possible; if ∥M∥ > 0, this means one cannot
triangularize M as efficiently as possible.
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Example: 2-torus

Fact

When M = T2, ∥M∥ = 0.

Proof.

∥M∥ ≤ 2

n
, ∀n ∈ Z+. Hence ∥M∥ = 0.
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Example: surface of genus g ≥ 2

Fact

When M is a closed surface with genus g ≥ 2, we have ∥M∥ > 0.

Proof. (Gromov, Thurston) Observe the following facts:

M admits a Riemannian metric g0 with constant curvature −1.

Every triangularization of any finite cover of M can be “deformed”
into a triangularization by the same amount of geodesic triangles with
respect to the metric g0.

Every geodesic triangle has g0-area at most π.

Therefore ∥M∥ ≥ Areag0(M)/π > 0.
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Example: surface of genus g ≥ 2 continued

Fact

When M is a closed surface with genus g ≥ 2, we have ∥M∥ > 0.
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Gromov hyperbolicity

Definition

A geodesic metric space X is δ-hyperbolic if every geodesic triangle is
δ-thin.
A geodesic metric space X is Gromov hyperbolic if it is δ-hyperbolic for
some δ ≥ 0.

Picture source: By Stomatapoll - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22898943.
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Example: M with Gromov hyperbolic universal cover

Fact

When the universal cover of M is Gromov hyperbolic, we have ∥M∥ > 0.

Proof. (Mineyev) Observe the following facts:

The universal cover of M is Gromov hyperbolic.

Every triangularization of any finite cover of M can be “deformed”
into a special triangularization. Moreover, there exists some uniform
constant C > 0 such that

#{simplices in the special triangularization}
#{simplices in the original triangularization}

≤ C

The special triangularization only involves a finite collection of
simplices {σ1, . . . , σm}.

Therefore ∥M∥ ≥ Area(M)/C ·max1≤k≤m{Area(σk)} > 0. (Details
discussed later.)
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Some known results

The simplicial volume ∥M∥ is positive if

M is negatively curved. (Gromov 82’, Thurston 77’)

M is a locally symmetric space of non-compact type.
(Lafont-Schmidt, 06’)

M is nonpositively curved and admits a point with negative curvature
(Connell-Wang, 20’)

The universal cover of M is Gromov hyperbolic. (Equivalently, π1(M)
is Gromov hyperbolic.) (Mineyev, 01’)

π1(M) is relatively hyperbolic with respect to a collection of
fundamental groups of submanifolds (Mineyev-Yaman (preprint),
Franceschini, 18’)
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Conjectures

Conjecture (Gromov)

If M admits a Riemannian metric with nonpositive sectional curvature and
negative definite Ricci curvature, then ||M|| > 0.

Conjecture (Gromov)

If M is aspherical and ||M|| = 0, then the Euler characteristic of M is zero.

Conjecture (Connell-Wang)

If M admits a Riemannian metric with nonpositive sectional curvature
everywhere and negative definite Ricci curvature at some point, then
||M|| > 0.
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Totally geodesic submanifolds

Definition

A Riemannian submanifold N in a Riemannian manifold M is totally
geodesic if geodesics in N are also geodesics in M.

Examples

When M = Rn is equipped with the standard Euclidean metric, lower
dimensional subspaces are totally geodesic in M.

When M = S2 is equipped with the standard spherical metric, great
circles are totally geodesic in M.

Ruan, Yuping (Northwestern University) Positivity of simplicial volume December 21, 2024 14 / 99



Totally geodesic submanifolds

Definition

A Riemannian submanifold N in a Riemannian manifold M is totally
geodesic if geodesics in N are also geodesics in M.

Examples

When M = Rn is equipped with the standard Euclidean metric, lower
dimensional subspaces are totally geodesic in M.

When M = S2 is equipped with the standard spherical metric, great
circles are totally geodesic in M.

Ruan, Yuping (Northwestern University) Positivity of simplicial volume December 21, 2024 14 / 99



Parallel geodesics and Sandwich lemma

Definition (Parallel)

Let X be a simply connected, non-positively curved Riemannian manifold.
Let c1, c2 : R → X be geodesics in X . We say that c1 and c2 are parallel if
there exists some δ > 0 such that the following holds:

c1 is contained in a δ-neighborhood of c2.

c2 is contained in a δ-neighborhood of c1.

Sandwich lemma

If c1 and c2 are parallel, they bound a totally geodesic submanifold
isometric to [0, r ]× R in X .

Some terminologies:

Flat strip in X : tot, geo. submanifold in X isometric to [0, r ]× R.
k-flat in X : tot. geo. submanifold in X isometric to Rk . (k ≥ 2)

Ruan, Yuping (Northwestern University) Positivity of simplicial volume December 21, 2024 15 / 99



Parallel geodesics and Sandwich lemma

Definition (Parallel)

Let X be a simply connected, non-positively curved Riemannian manifold.
Let c1, c2 : R → X be geodesics in X . We say that c1 and c2 are parallel if
there exists some δ > 0 such that the following holds:

c1 is contained in a δ-neighborhood of c2.

c2 is contained in a δ-neighborhood of c1.

Sandwich lemma

If c1 and c2 are parallel, they bound a totally geodesic submanifold
isometric to [0, r ]× R in X .

Some terminologies:

Flat strip in X : tot, geo. submanifold in X isometric to [0, r ]× R.
k-flat in X : tot. geo. submanifold in X isometric to Rk . (k ≥ 2)

Ruan, Yuping (Northwestern University) Positivity of simplicial volume December 21, 2024 15 / 99



Isolatedness

Definition (Isolated)

Let M be a compact, non-positively curved Riemannian manifold with
dimension at least two. Let N be a closed, tot. geo. submanifold of
codimension-1. We say that N is isolated in M if the following holds: Let
F be any lift of N in the universal cover X of M. Then

(No self-intersection) γF ∩ F = ∅ for any γ ∈ π1(M).

(All geodesic parallel to F is contained in F ) If a bi-infinite geodesic
in X lies in the r -neighborhood of F for some r > 0, then this
geodesic is contained in F .

Examples

M is negatively curved surface, N is the shortest closed geodesic.

M is analytic and rank-one, a lift of N in the universal cover of M is a
codimension-1 flat.
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Rank of a geodesic

Definition (Rank of a geodesic)

The rank of a geodesic is the dimension of the space of parallel Jacobi
fields along this geodesic. The rank of a manifold M is the smallest
possible rank of geodesics in M.

All geodesics have rank at least 1. (Tangent vector field along a
geodesic is a parallel Jacobi field)

If a geodesic is contained in a k-flat after lifting to the universal
cover, then the rank of this geodesic is at least k .
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Flats in analytic, nonpositively curved manifolds

Let X be a simply-connected, analytic non-positively curved Riemannian
manifold (dim ≥ 3) and F be a codimension-1 flat in X .

Observe the following:

If a geodesic is contained in a F , then the rank of this geodesic is at
least k .

The intersection between two different tot. geo. submanifolds is tot.
geo.

Analytic assumption implies that any flat strip in X can be extended
to a 2-flat.

Hence if there is a different flat intersecting F , then X has rank at least 2.
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Main theorem

Theorem A (24’ Connell-R-Wang)

Let M be a compact, non-positively curved Riemannian manifold with
dimension at least two. If it admits an isolated, closed, totally geodesic
submanifold of codimension-1, then the simplicial volume ∥M∥ > 0.

Corollary (24’ Connell-R-Wang)

Let M be a compact, analytic, non-positively curved Riemannian manifold
with dimension at least two. If its universal cover admits a codimension
one flat. Then exactly one of the following holds:

∥M∥ > 0.

M has non-trivial Euclidean de Rham factors. (In particular, M has
rank at least two.
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Higher rank manifolds

Higher rank:= “rank≥ 2”.

Examples

The following non-positively curved manifolds have higher rank:

M1 ×M2, where M1 and M2 are non-positively curved.

Γ\SL(3,R)/SO(3), where Γ is a lattice in SL(3,R).

Theorem (Rank rigidity theorem, Ballman, Burns-Spatzier, 87’)

Let M be a closed Riemannian manifold with non-positive curvature. Then
M has higher rank if and only if one of the following holds:

The universal cover of M splits as a product.

M is locally symmetric.
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Maximal higher rank submanifolds (MHRS)

Let M be a closed, nonpositively curved Riemannian manifold with
universal cover X . Let P : X → M be the covering map.

Higher rank submanifolds (HRS) of X :=“complete tot. geo.
submanifolds of X with rank at least 2.”

Maximal higher rank submanifolds (MHRS) of X := HRS of X which
is not properly contained in another HRS.

A MHRS in X is closed if its image under P is compact.

Some facts about MHRS:

Flats are always containd in a MHRS.

If MHRS (or flats) do not exist, then X is Gromov hyperbolic. In
particular, ∥M∥ > 0 is already known due to Mineyev.
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Classification of rank-one analytic 4-manifolds with
nonpositive curvature

Theorem (Schroeder, 89’)

Let M be a closed, rank one, 4-dimensional analytic manifold of
nonpositive curvature, and X be the universal cover of M. Then all MHRS
of X are closed. Moreover, for any MHRS F , one of the following holds:

(1) F is a 2-flat.

(2) F is a 3-flat.

(3) F is isometric to Σ× R, where Σ is a non-flat 2-dimensional
Hadamard manifold. There are two cases:

(3a) F does not intersect any other MHRS of the same type.
(3b) F intersects another MHRS of the same type.
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Gromov’s conjecture restricted to dimension 4

Conjecture (Gromov)

If M is closed, aspherical and ||M|| = 0, then the Euler characteristic of M
is zero.

Difficult!
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Gromov’s conjecture restricted to dimension 4

Weaker conjecture in dimension 4

In dimension 4, if M is closed, non-positively curved and ||M|| = 0, then
the Euler characteristic of M is zero.

Still difficult!
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Gromov’s conjecture restricted to dimension 4

Weaker conjecture in dimension 4

In dimension 4, if M is closed, analytic, non-positively curved and
||M|| = 0, then the Euler characteristic of M is zero.

Theorem B (23’ Connell-R-Wang)

Let M be a 4-dimensional closed, analytic manifold of non-positive
curvature. If the Euler charateristic of M is zero, then M has non-trivial
Euclidean de Rham factors. In particular, ∥M∥ = 0.

Main idea of proof:
If Ricci of M degenerate everywhere, this is known due to Guler-Zheng.
If M admits points with negative-definite Ricci, we construct a 2-tensor q.
Do a first variation of the Gauss-Bonnet-Chern formula along q to show
that there are too many 3-flats in the universal cover of M. Hence M
must be higher rank. The rest follows from the rank rigidity theorem.
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Gromov’s conjecture restricted to dimension 4

Conjecture

Let M be a closed, analytic, non-positively curved 4-manifold. Then
||M|| = 0 if and only if the Euler characteristic of M is zero.

Theorem (Schroeder, 89’)

Let F be a MHRS in the universal cover of M. One of the following holds:

(1) F is a 2-flat.

(2) F is a 3-flat.

(3) F is isometric to Σ× R.There are two cases:

(3a) F does not intersect any other MHRS of the same type.
(3b) F intersects another MHRS of the same type.

Progress: Conjecture is true when

Type (3b) does not exist. (Hruska-Kleiner-Hindawi-Mineyev-Yaman)

Type (2) or (3a) exist. (Theorem A, 24’ Connell-R-Wang)
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(1) F is a 2-flat.

(2) F is a 3-flat.

(3) F is isometric to Σ× R.There are two cases:

(3a) F does not intersect any other MHRS of the same type.
(3b) F intersects another MHRS of the same type.

Progress: Conjecture is true when

Type (3b) does not exist. (Hruska-Kleiner-Hindawi-Mineyev-Yaman)

Type (2) or (3a) exist. (Theorem A, 24’ Connell-R-Wang)
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Straightening argument

Proving ∥M∥ > 0 via straightening:

Need a notion of hyperbolicity. (e.g. negative curvature, Gromov
hyperbolicity, relative hyperbolicity, etc.)

Construct a notion of “volume”.

Construct special simplices such that all special simplices have
“volume” uniformly bounded by A, where A > 0 is a uniform
constant.

For any simplex σ define the straightened simplex st(σ) such that
st(σ) is a linear combination of special simplices with total weight
bounded by C , where C > 0 is a uniform constant.

Then we have

∥M∥ ≥ “volume” of M

AC
> 0
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Straightening argument

Straightening argument:

Hyperbolicity.

“Volume”.

Special simplices with “volume” ≤ A.

Straightened simplex st(σ) with |st(σ)|l1 ≤ C .
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Example: geodesic straightening (Gromov, Thurston)

Fact

When M is a closed surface with genus g ≥ 2, we have ∥M∥ > 0.

Proof. (Gromov, Thurston) Observe the following facts:

M admits a Riemannian metric g0 with constant curvature −1.

Every triangularization of any finite cover of M can be “deformed”
into a triangularization by the same amount of geodesic triangles with
respect to the metric g0.

Every geodesic triangle has g0-area at most π.

Therefore ∥M∥ ≥ Areag0(M)/π > 0.
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Example: geodesic straightening (Gromov, Thurston)

Fact

When M is a closed surface with genus g ≥ 2, we have ∥M∥ > 0.

Straightening argument:

Hyperbolicity.

“Volume”.

Special simplices with
“volume” ≤ A.

Straightened simplex
st(σ) with |st(σ)|l1 ≤ C .

Application:

Hyperbolicity:=constant negative
curvature.

“Volume”:=Riemannian volume.

Special simplices:=geodesic simplices.

Straightened simplex st(σ) :=geodesic
simplex with the same vertices of σ.
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Example: barycentric straightening (Lafont-Schmidt,
Connell-Wang)

Barycentric construction: Let X ,Y be Riemannian manifolds. If there is
a smooth function Φ : X × Y → R such that Φ(·; y) is strictly convex for
any y ∈ Y which always admits a critical point, then one can construct
the corresponding barycenter map σ : Y → X by

σ(y) := the unique critical point of Φ(·; y).

Barycentric simplices: Y = ∆.

Examples

Let σ : ∆ → X be a singular simplex with vertices p0, . . . , pk . If X is
simply-connected and nonpositively curved, one can define the
straightened simplex st(σ) as a barycenter map using the following Φ.

Φ(q; a0, . . . , ak) = a0(d(q, p0))
2 + . . . ak(d(q, pk))

2. (Theorem A)

Φ(q; a0, . . . , ak) = a0B(q, p0) + . . . akB(q, pk), where B is a weighted
average of Busemann functions. (Besson-Courtois-Gallot, LS, CW)
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Example: barycentric straightening (Lafont-Schmidt)

Theorem (Lafont-Schmidt)

When M = Γ\SL(4, n)/SO(4) with Γ a co-compact lattice of SL(4, n), we
have ∥M∥ > 0.

Straightening argument:

Hyperbolicity.

“Volume”.

Special simplices with
“volume” ≤ A.

Straightened simplex
st(σ) with |st(σ)|l1 ≤ C .

Application:

Hyperbolicity:=“Lots of negative
curvature, not very many zero
curvature” (Eigenvalue matching,
Connell-Farb, 03’).

“Volume”:=Riemannian volume.

Special simplices:=barycentric simplices
(Besson-Courtois-Gallot, 90’s).

Straightened simplex
st(σ) :=barycentric simplex with the
same vertices of σ.
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Example: barycentric straightening (Connell-Wang)

Theorem (Connell-Wang)

When M is a closed, nonpositively curved Riemannian manifold with
strictly negative curvature near a point p0, we have ∥M∥ > 0.

Straightening argument:

Hyperbolicity.

“Volume”.

Special simplices with
“volume” ≤ A.

Straightened simplex
st(σ) with |st(σ)|l1 ≤ C .

Application:

Hyperbolicity:=negative curvature near
a point.

“Volume”:= ρ(x)dvol, where ρ(x) is
supported near p0. (Local volume.)

Special simplices:=barycentric simplices
(Besson-Courtois-Gallot).

Straightened simplex
st(σ) :=barycentric simplex with the
same vertices of σ.
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Example: Gromov hyperbolicity (Mineyev)

Fact

When the universal cover of M is Gromov hyperbolic, we have ∥M∥ > 0.

Proof. (Mineyev) Observe the following facts:

The universal cover of M is Gromov hyperbolic.

Every triangularization of any finite cover of M can be “deformed”
into a special triangularization. Moreover, there exists some uniform
constant C > 0 such that

#{simplices in the special triangularization}
#{simplices in the original triangularization}

≤ C

The special triangularization only involves a finite collection of
simplices {σ1, . . . , σm}.

Therefore ∥M∥ ≥ Area(M)/C ·max1≤k≤m{Area(σk)} > 0. (Details
discussed later.)
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Example: Gromov hyperbolicity (Mineyev)

Fact

When the universal cover of M is Gromov hyperbolic, we have ∥M∥ > 0.

Straightening argument:

Hyperbolicity.

“Volume”.

Special simplices with
“volume” ≤ A.

Straightened simplex
st(σ) with |st(σ)|l1 ≤ C .

Application:

Hyperbolicity:=Gromov hyperbolicity of
the universal cover.

“Volume”:=Riemannian volume.

Special simplices:=A finite collection of
simplices {σ1, . . . , σm}.
Straightened simplex
st(σ) ∈ span{σ1, . . . , σm} with
|st(σ)|l1 < C .

Question: What are the constructions of special/straightened simplices?
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Mineyev’s approach

Notations: M is a compact Riemannian manifold. X is the universal
cover of M which is Gromov hyperbolic. Γ := π1(M). Ck(X ;R) the
R-vector space of all k-dimensional singular chains in X .

Proposition (“fake version” of Mineyev, 01)

There is a R[Γ]-chain homomorphism h• : C•(X ;R) → C•(X ;R) such that
the following holds:

hk = Id whenever k ≤ 0.

When k ≥ 2, for any k-simplex σ, |hk(σ)|l1 ≤ C (k) for some uniform
constant C (k) which only depends on k . (Bounded at level k.)

When k ≥ 2, the image of hk is contained in a finitely generated
R[Γ]-module.

Remark: This is not the original version of Mineyev’s result. The original version

uses cellular homology on EΓ instead of singular homology on X . (See the next

slide.)
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Mineyev’s approach

Construction of EΓ: Start with points in Γ.

Glue 1-simplices to all
ordered pair of points (γ0, γ1) in Γ. Glue 2-simplices to all ordered triple of
points (γ0, γ1, γ2) in Γ......
Cellular chains of EΓ: Ck(EΓ;R):=R-vector space spanned by all
k-simplices in EΓ (equivalently, (k + 1)-ordered tuples of Γ).

Proposition (Mineyev, 01)

There is a R[Γ]-chain homomorphism h• : C•(EΓ;R) → C•(EΓ;R) such
that the following holds:

hk = Id whenever k ≤ 0.

When k ≥ 2, for any k-simplex σ, |hk(σ)|l1 ≤ C (k) for some uniform
constant C (k) which only depends on k . (Bounded at level k.)

When k ≥ 2, the image of hk is contained in a finitely generated
R[Γ]-module.
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Rips complex

Word metric on Γ: Let S be a finite generating set of Γ closed under
inverse. The corresponding word metric is defined by

dS(γ1, γ2) := min{L ∈ Z≥0 : γ1γ
−1
2 = γ(1) . . . γ(L)}.

Construction of Rips complex Y = YΓ,K : Fix a large number K > 0 and
a generating set S of Γ. Start with points in Γ. Glue 1-simplices to all pair
of points (γ0, γ1) in Γ if dS(γ0, γ1) ≤ K . Glue 2-simplices to all triple of
points (γ0, γ1, γ2) in Γ if dS(γi , γj) ≤ K for any i , j ∈ {0, 1, 2}......
Properties:

X is Gromov hyperbolic if and only if (Γ, dS) is Gromov hyperbolic.
(They are quasi-isometric due to Milnor-Svarc)

Y is finite dimensional.

There are only finitely many k-simplices in Y up to Γ action.

When Γ is Gromov hyperbolic and K ≫ 1, Y is contractible.
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Construction of Rips complex Y = YΓ,K : Fix a large number K > 0 and
a generating set S of Γ. Start with points in Γ.

Glue 1-simplices to all pair
of points (γ0, γ1) in Γ if dS(γ0, γ1) ≤ K . Glue 2-simplices to all triple of
points (γ0, γ1, γ2) in Γ if dS(γi , γj) ≤ K for any i , j ∈ {0, 1, 2}......
Properties:

X is Gromov hyperbolic if and only if (Γ, dS) is Gromov hyperbolic.
(They are quasi-isometric due to Milnor-Svarc)

Y is finite dimensional.

There are only finitely many k-simplices in Y up to Γ action.

When Γ is Gromov hyperbolic and K ≫ 1, Y is contractible.
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Mineyev’s approach

Proposition (Mineyev, 01)

There is a R[Γ]-chain homomorphism h• : C•(EΓ;R) → C•(EΓ;R) such
that the following holds:

hk = Id whenever k ≤ 0.

When k ≥ 2, for any k-simplex σ, |hk(σ)|l1 ≤ C (k) for some uniform
constant C (k) which only depends on k . (Bounded at level k.)

When k ≥ 2, the image of hk is contained in a finitely generated
R[Γ]-module.

Idea of proof: Let Y be a contractible Rips complex of Γ. Then one can
construct the following R[Γ]-chain homomorphisms

ϕ• : C•(EΓ;R) → C•(Y ;R) and ψ• : C•(Y ;R) → C•(EΓ;R)

which are bounded at level ≥ 2. (h• = ψ• ◦ ϕ•.)
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Mineyev’s approach

Boundary map: Let σ = (p0, . . . , pk) be a k-simplex. We define the
boundary operator by

∂k(σ) :=
k∑

j=0

(−1)j(p0, . . . , p̂j , . . . , pk).

Properties of the R[Γ]-chain homomorphism:
ϕ• : C•(EΓ;R) → C•(Y ;R)

∂Yk ◦ ϕk = ϕk−1 ◦ ∂EΓ
k .

For any k ≥ 2 and any k-simplex σ in EΓ, there exists some uniform
constant C (k) such that |ϕk(σ)|l1 ≤ C (k). In particular,
|∂Yk ◦ ϕk(σ)|l1 ≤ (k + 1)C (k).

Focus on k = 2: Let β(γ0, γ1) := ϕ1(γ0, γ1), then

|β(γ0, γ1) + β(γ1, γ2) + β(γ2, γ0)| ≤ 3C (1).
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Bicombing construction

Main idea: Start with geodesic triangles. Replace each edge by a convex
combination of nearby oriented paths. δ-hyperbolicity implies that these
new oriented paths have a lot of cancellations.
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Bicombing construction

Step 1: Cut long geodesics [x , y ].
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Bicombing construction

Step 2: Construction of f (x , y).
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Bicombing construction

Step 2.5: Construction of f (x , y).
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Bicombing construction

Step 3: Use f (x , y) to construct desired nearby paths.
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Bicombing construction

Step 3: Use flowers to construct desired nearby paths.
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Bicombing construction

Step 4: Anti-symmetrize.
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Bicombing construction

Step 4: Anti-symmetrize.

β(x , y) =
1

2

(
β′(x , y)− β′(y , x)

)
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Review: Straightening argument

Proving ∥M∥ > 0 via straightening:

Need a notion of hyperbolicity. (e.g. negative curvature, Gromov
hyperbolicity, relative hyperbolicity, etc.)

Construct a notion of “volume”.

Construct special simplices such that all special simplices have
“volume” uniformly bounded by A, where A > 0 is a uniform
constant.

For any simplex σ define the straightened simplex st(σ) such that
st(σ) is a linear combination of special simplices with total weight
bounded by C , where C > 0 is a uniform constant.

Then we have

∥M∥ ≥ “volume” of M

AC
> 0
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Review: Main theorem

Definition (Isolated)

Let M be a compact, non-positively curved Riemannian manifold with
dimension at least two. Let N be a closed, tot. geo. submanifold of
codimension-1. We say that N is isolated in M if the following holds: Let
F be any lift of N in the universal cover X of M. Then

(No self-intersection) γF ∩ F = ∅ for any γ ∈ π1(M).

(All geodesic parallel to F is contained in F ) If a bi-infinite geodesic
in X lies in the r -neighborhood of F for some r > 0, then this
geodesic is contained in F .

Theorem A (24’ Connell-R-Wang)

Let M be a compact, non-positively curved Riemannian manifold with
dimension at least two. If it admits an isolated, closed, totally geodesic
submanifold of codimension-1, then the simplicial volume ∥M∥ > 0.
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Notations

Notations for the rest of this talk:

M: Compact non-positively curved Riemannian manifold.

N: An isolated, closed, tot. geo. submanifold of M.

X : Universal cover of M.

F : A lift of N. (For simplicity, we call lifts of N as “flats”.)

Γ: Fundamental group of M.

[x , y ]: Geodesic segment connecting x , y in X .

ProjF : X → F : orthogonal projection onto F

Isolated condition

(No self-intersection) γF ∩ F = ∅ for any γ ∈ Γ.

(All geodesic parallel to F is contained in F ) If a bi-infinite geodesic
in X lies in the r -neighborhood of F for some r > 0, then this
geodesic is contained in F .
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Hyperbolicity

Isolated condition

(No self-intersection) γF ∩ F = ∅ for any γ ∈ Γ.

(All geodesic parallel to F is contained in F ) If a bi-infinite geodesic
in X lies in the r -neighborhood of F for some r > 0, then this
geodesic is contained in F .

Key lemma-1: Hyperbolicity perpendicular to the “flats”

There exists some δ > 0 such that for any distinct x , y , z ∈ X satisfying
y , z ∈ F and [x , y ] ⊥ F , the geodesic triangle with vertices x , y , z is δ-thin.

Compare to

Definition (Gromov hyperbolicity)

δ-hyperbolicity: Every geodesic triangle is δ-thin.
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Hyperbolicity: d([x , y ],F ) and d(ProjF (x),ProjF (y))

Key lemma-1 implies the following Key lemma:

Key lemma-2: observing d([x , y ],F ) via d(ProjF (x),ProjF (y))

Let q1, q2 ∈ X \ F . Denoted by rj = ProjF (qj), j=1,2.

(1) For any ϵ > 0, there exist some R1(ϵ) > 0 such that if
d(r1, r2) ≥ R1(ϵ), then d([q1, q2],F ) ≤ ϵ. In other words, if
d([q1, q2],F ) > ϵ, then d(r1, r2) < R1(ϵ).

(2) If we assume in addition that q1, q2 are on the same side of F , for any
r > 0, R > 0, there exists some c1(r ,R) > 0 such that if d(qj ,F ) ≥ r ,
j = 1, 2 and d(r1, r2) ≤ R, then d([q1, q2],F ) ≥ c1(r ,R).

Vaguely speaking, the claim “d([x , y ],F ) is small if and only if
d(ProjF (x),ProjF (y)) is large” is true unless

[x , y ] intersects F .

one of x , y is too close to F .
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A possibly bad simplex

We find it hard to control the total volume of the following simplex
because of the codimension-1 face in F :

Quick take-away:

Support of the volume should be away from N.

Vertices of the desired simplices should be away from N.
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Volume and good simplices

Choice of volume: ρ(x)dvolM , where ρ(x) is supported in
{p ∈ M, d(p,N) ∈ (ϵ5/4, ϵ5/2)} for some EXTREEEEEEEEEEEEMLY
small ϵ5 > 0.

Good simplices: Let x0 ∈ X be a fixed point such that
0 < d(x0,F ) = ϵ0 ≪ 1, a simplex is good if its vertices are in Γx0.

Lemma

Let σ be a good geodesic (or a good simplex obtained by a suitable
barycentric construction) of dimension k in X with vertices p0, . . . , pk . For
any 0 < r < R, we define Ar ,R(F ) := {q ∈ X |d(x ,F ) ∈ [r ,R]}. Then
there exists C = C (r ,R, ϵ0) > 0 such that

Im(σ) ∩ Ar ,R(F ) ⊂
k⋃

j=0

BC (ProjF (pj)).
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Review: barycentric straightening (Lafont-Schmidt,
Connell-Wang)

Barycentric construction: Let X ,Y be Riemannian manifolds. If there is
a smooth function Φ : X × Y → R such that Φ(·; y) is strictly convex for
any y ∈ Y which always admits a critical point, then one can construct
the corresponding barycenter map σ : Y → X by

σ(y) := the unique critical point of Φ(·; y).
Barycentric simplices: Y = ∆.

Examples

Let σ : ∆ → X be a singular simplex with vertices p0, . . . , pk . If X is
simply-connected and nonpositively curved, one can define the
straightened simplex st(σ) as a barycenter map using the following Φ.

Φ(q; a0, . . . , ak) = a0(d(q, p0))
2 + . . . ak(d(q, pk))

2. (Theorem A)

Φ(q; a0, . . . , ak) = a0B(q, p0) + . . . akB(q, pk), where B is a weighted
average of Busemann functions. (Besson-Courtois-Gallot, LS, CW)
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Geodesic simplices versus barycentric simplices

Lemma

Let σ be a good geodesic (or a good barycentric simplex) of dimension k
in X with vertices p0, . . . , pk . For any 0 < r < R, we define
Ar ,R(F ) := {q ∈ X |d(x ,F ) ∈ [r ,R]}. Then there exists
C = C (r ,R, ϵ0) > 0 such that

Im(σ) ∩ Ar ,R(F ) ⊂
k⋃

j=0

BC (ProjF (pj)).

Assume that σ is top-dimensional. Then,
Good geodesic simplex:

∫
σ χAr,R(F )(x)dvolX (x) ≤??????.

Good barycentric simplex:
∫
σ χAr,R(F )(x)dvolX (x) ≤ C (r ,R, ϵ0).

Barycentric simplices WIN!
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Straightened simplices

Special simplices: Any lift of a special simplex σ is a special barycentric
simplex. Moreover, at most N elements in ΓF is ϵ5 close to any lift of it.

Straightened simplices: A weighted sum of special simplices whose total
weight is at most C .
Then for any top dimensional simplex σ in M, its straightened simplex
st(σ) satisfies ∫

st(σ)
ρ(x)dvolM ≤ C · NC ′(ϵ5, ϵ0).

How to construct straightened simplices:

Start with a good barycentric simplex.

“Cut” the 1-skeleton of the large good simplex into smaller pieces
using ΓF . (Get special simplices.)

Modify edges using bicombing. (Controlling the total weight.)

Refill the new 1-skeleton into the straightened simplices.
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Separating simplices by ”flats”

Setting: Let σ be a barycentric simplex in X with vertex set V ⊂ Γx0. In
particular, the 1-skeleton of σ is the collection of geodesic segments
joining pairs of vertices in V .

Observation 1: If F̂ ∈ ΓF intersects the 1-skeleton of σ, then there exists
∅ ≠ I ⊊ V such that

d([x , y ], F̂ ) = 0, ∀x ∈ I , y ∈ V \ I .

Observation 2: The above choice of the unordered pair {I ,V \ I} is
unique. In other words, for any distinct vertices x , y ∈ V

d([x , y ], F̂ ) = 0 iff |{x , y} ∩ V | = 1.

Observation 3: Let W ⊂ V . The W -face of σ is the face of σ whose
vertex set is exactly W .If in addition that F̂ intersects the 1-skeleton of σ,
then for any distinct vertices x , y ∈ W

d([x , y ], F̂ ) = 0 iff |{x , y} ∩W | = 1.
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Actual separation

Actural separation: We say that F̂ ∈ ΓF (actually) separates σ if F̂
intersects the 1-skeleton of σ.

Separation type: Let ∅ ≠ I ⊂ V . We say that the unordered pair
{I ,V \ I} is an (actual) separation type for F̂ w.r.t σ if

d([x , y ], F̂ ) = 0, ∀x ∈ I , y ∈ V \ I .

Properties:

(Ob. 2) Actual separation types are unique.

(Ob. 3) Let ResVW ({I ,V \ I}) := {I ∩W ,W \ I}. If {I ,V \ I} is an

actual separation type for F̂ w.r.t σ, then ResVW ({I ,V \ I}) is also an

actual separation type for F̂ w.r.t the W -face of σ.

(Ob. 4) Let F1,F2 ∈ ΓF be distinct elements with separation types
{I1,V \ I1}, {I2,V \ I2} respectively. Then WLOG, we can assume
that I1 ∩ I2 = ∅.
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Isolatedness and Ob. 4

Observation 4: Let F1,F2 ∈ ΓF be distinct elements with separation
types {I1,V \ I1}, {I2,V \ I2} respectively. Then WLOG, we can assume
that I1 ∩ I2 = ∅.
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Problem with actual separation

A Review on our constructions in the straightening arguments:

Volume: ρ(x)dvolM , where ρ(x) is supported in
{p ∈ M, d(p,N) ∈ (ϵ5/4, ϵ5/2)} for some
EXTREEEEEEEEEEEEMLY small ϵ5 > 0.

Special simplices: Any lift of a special simplex σ is a special
barycentric simplex. Moreover, at most N elements in ΓF is ϵ5 close
to any lift of it.

Straightened simplices: A weighted sum of special simplices whose
total weight is at most C .

Problem: If a “flat” does not intersects a simplex but is close to the
simplex, it contributes to volume. We should consider these “flats” as well!
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Almost separation

Definition (ϵ-almost separation)

We say that F̂ ∈ ΓF ϵ-almost separates σ if there exists ∅ ≠ I ⊂ V such
that

d([x , y ], F̂ ) ≤ ϵ, ∀x ∈ I , y ∈ V \ I .

{I ,V \ I} is called an ϵ-almost separation type of F̂ w.r.t σ.
The collection of all separation types of F̂ with respect to σ is denoted as
SepV (F ).

Remark: When ϵ = 0, this is the same as actual separation.
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Properties of actual separation

Properties of actual separation:

(Ob. 2) Actual separation types are unique.

(Ob. 3) Let ResVW ({I ,V \ I}) := {I ∩W ,W \ I}. If {I ,V \ I} is an

actual separation type for F̂ w.r.t σ, then ResVW ({I ,V \ I}) is also an

actual separation type for F̂ w.r.t the W -face of σ.

(Ob. 4) Let F1,F2 ∈ ΓF be distinct elements with separation types
{I1,V \ I1}, {I2,V \ I2} respectively. Then WLOG, we can assume
that I1 ∩ I2 = ∅.
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Properties of almost separation

Properties of almost separation:

(Ob. 2) Almost separation types are NOT unique.

(Ob. 3) Let ResVW ({I ,V \ I}) := {I ∩W ,W \ I}. If {I ,V \ I} is an

ϵ-almost separation type for F̂ w.r.t σ, then ResVW ({I ,V \ I}) is also
an ϵ-almost separation type for F̂ w.r.t the W -face of σ.

(Ob. 4) Assume that ϵ < ϵ0 ≪ 1. Let F1,F2 ∈ ΓF be distinct
elements with ϵ-almost separation types {I1,V \ I1}, {I2,V \ I2}
respectively. Then WLOG, we can assume that I1 ∩ I2 = ∅.

For any ϵ > 0, there exists some constant c(ϵ) ∈ (0, ϵ) such that if F̂
does not ϵ-almost separate σ, then d(σ, F̂ ) ≥ c(ϵ). Therefore, the
volume of σ is only related to “flats” which almost separates it!
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Possible bizarre phenomena

Multiple almost separation types:

All three edges are ϵ-close to F . This makes our notations and
definitions more complicated. However, this does not cause any
essential trouble for us.
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Possible bizarre phenomena

“Flats” ϵ-almost intersecting an edge but not ϵ-almost intersecting
the simplex.

Only one edge is ϵ-close to F . This and its variants are the major
threat when we prove Theorem A!
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Possible bizarre phenomena

Edges getting ϵ-almost separated, but not revealed by separation
types: Let x , y be distinct vertices in V . The following is possible:

F̂ ϵ-almost separate [x , y ] and σ.

For any ϵ-almost separation type {I ,V \ I}, either x , y ∈ I or
x , y ∈ V \ I .
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Mineyev’s bicombing construction revisited

Key steps:

Step 1: Cut long geodesics.

Step 2: Construct f (x , y) inductively. (This step is the key to control
| · |l1 of the boundary of a 2-simplex.)

Step 3: Use f (x , y) or f (x , y) to construct β′(x , y).

Step 4: Anti-symmetrize.

Main challenges:

Step 1: How to cut?

Step 2: How to construct f (x , y) and ensure enough cancellation?

Step 3 and Step 4 are not problematic for us.
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Cutting long edges

Natural cutting: Cut a long geodesic using “flats” that are ϵ-almost
separating the edge.
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Problem with ϵ-almost separation
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Problem with ϵ-almost separation

Problem: In the picture, the cutting along [x , p] may be unrelated to the
cutting along [x , y ].

Good news: Vertices of geodesic segments that we care about are all
close to a unique “flat”.
Resolving the issue: We cut the geodesic [x , y ] only by “flats” that are
between Fx and Fy . This notion of “in-between” must satisfy some “linear
ordering”. (To be explained in the next slide.)
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In-between for “flats”

“In-between”: For any F̂ ,F1,F2 ∈ ΓF , F̂ is between F1 and F2 if either
of the following holds:

F̂ = F1 or F2.

F1 and F2 are on two different sides of F̂ .

Properties of “in-between” for real numbers: let a, b be real numbers.

If c is between a and b, then any real number d which is between a
and c is also between a and b

If c is between a and b, then c is the real number which is
simultaneously between a and c and between c and b.

Properties of “in-between”: (Linear ordering properties)

If F3 is between F1 and F2, then any element F̂ ∈ ΓF which is
between F1 and F3 is also between F1 and F2

If F3 is between F1 and F2, then F3 is the unique element in ΓF
which is simultaneously between F1 and F3 and between F3 and F2.
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Problems with ϵ-almost in-between

Attempt 1: For any F̂ ,F1,F2 ∈ ΓF , F̂ is between F1 and F2 if either of
the following holds:

F̂ = F1 or F2.

There exists some pi near Fi such that F̂ ϵ-almost separates [p1, p2].

Attempt 2: For any F̂ ,F1,F2 ∈ ΓF , F̂ is between F1 and F2 if either of
the following holds:

F̂ = F1 or F2.

For any pi near Fi , i = 1, 2, the element F̂ ϵ-almost separates [p1, p2].

Problem: It is hard to tell whether linear ordering properties hold for any
of the above definition of “ϵ-almost in-between”.
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Improved notion of “almost in between”: Ω(F1,F2)

Recall that for any x ∈ Γx0, d(x ,Fx) ≤ ϵ0 ≪ 1. Choose 0 < ϵ2 ≪ ϵ1 ≪ ϵ0.

Definition of Ω(·, ·)
For any F1,F2 ∈ ΓF , we define Ω0(F1,F2) ⊂ ΓF such that

Ω0(F1,F2) =

{
F̂ ∈ ΓF

∣∣∣∣∣ ∃pj ∈ X s.t. d(pj ,Fj) ≤ ϵ0, j = 1, 2,

and d([p1, p2], F̂ ) < ϵ2.

}
.

Inductively we define

Ωk(F1,F2) :=
⋃

F ′,F ′′∈Ωk−1(F1,F2)

Ω0(F
′,F ′′).

Finally, we define

Ω(F1,F2) :=
∞⋃
j=0

Ωk(F1,F2).
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Properties of Ω(·, ·)

Properties of Ω(·, ·): (Think about Ω(F1,F2) as those “flats” which are
almost between F1 and F2.)

For any F̂ ∈ Ω(F1,F2) \ {F1,F2} and any x1, x2 such that
d(xi ,Fi ) < ϵ0, F̂ ϵ1-almost separates [x1, x2].

For any F3 ∈ Ω(F1,F2), Ω(F1,F3) ⊂ Ω(F1,F2) and
Ω(F3,F2) ⊂ Ω(F1,F2).

For any F3 ∈ Ω(F1,F2), we have Ω(F1,F3) ∩ Ω(F3,F2) = {F3}.
Properties of “in-between”: (Linear ordering properties)

If F3 is between F1 and F2, then any element F̂ ∈ ΓF which is
between F1 and F3 is also between F1 and F2

If F3 is between F1 and F2, then F3 is the unique element in ΓF
which is simultaneously between F1 and F3 and between F3 and F2.
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Main problem with Ω(·, ·)

Key steps:

Step 1: Cut long geodesics.

Step 2: Construct f (x , y) inductively. (This step is the key to control
| · |l1 of the boundary of a 2-simplex.)

Step 3: Use f (x , y) or f (x , y) to construct β′(x , y).

Step 4: Anti-symmetrize.

Main challenges:

Step 1: How to cut? (Resolved by Ω(·, ·))
Step 2: How to construct f (x , y) and ensure enough cancellation?

Step 3 and Step 4 are not problematic for us.

Problem with Ω:
One can perform Step 2 as well with Ω(·, ·), but it is unclear cancellations
are enough.
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Improving notion of “almost in between”: Θ(F1,F2)

Definition of Θ(·, ·)
Let 0 < ϵ4 ≪ ϵ3 ≪ ϵ2. For any F1,F2 ∈ ΓF , we define

Θ0(F1,F2) = {F1,F2} ∪

F̂ ∈ ΓF

∣∣∣∣∣∣∣∣
∃p′j ∈ X and F ′

j ∈ Ω(F1,F2)

s.t. F̂ ̸= F ′
j , d(p

′
j ,F

′
j ) ≤ ϵ0, j = 1, 2,

and d([p′1, p
′
2], F̂ ) < ϵ4

 .

Similar to Ω(·, ·), we define

Θk(F1,F2) :=
⋃

F ′,F ′′∈Θk−1(F1,F2)

Θ0(F
′,F ′′).

Finally, we define

Θ(F1,F2) :=
∞⋃
j=0

Θk(F1,F2).
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Properties of Θ(·, ·)

Properties of Θ(·, ·) (similar to those of Ω(·, ·)): (Think about
Θ(F1,F2) as those “flats” which are almost between F1 and F2.)

For any F̂ ∈ Θ(F1,F2) \ {F1,F2} and any x1, x2 such that
d(xi ,Fi ) < ϵ0, F̂ ϵ3-almost separates [x1, x2].

For any F3 ∈ Θ(F1,F2), Θ(F1,F3) ⊂ Θ(F1,F2) and
Θ(F3,F2) ⊂ Θ(F1,F2).

For any F3 ∈ Θ(F1,F2), we have Θ(F1,F3) ∩Θ(F3,F2) = {F3}.
Additional property of Θ(·, ·): Let
F(x , y , z) := Θ(Fx ,Fy ) ∪Θ(Fy ,Fz) ∪Θ(Fz ,Fx),
Fx(y , z) := Θ(Fx ,Fy ) ∩Θ(Fy ,Fz), Fy (z , x) := Θ(Fy ,Fz) ∩Θ(Fy ,Fx),
Fz(x , y) := Θ(Fz ,Fx) ∩Θ(Fz ,Fy ) and

A(x , y , z) := Fx(y , z) ∪ Fy (z , x) ∪ Fz(x , y).

Then
|F(x , y , z) \ A(x , y , z)| ≤ 3.
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Interpreting the additional property

If we replace Ω with Θ, the bicombing construction works completely
with the desired norm control.

Consider the following graph: vertices are ΓF ; two distinct vertices F1
and F2 are joined by an edge if and only if Θ(F1,F2) = {F1,F2}.
Then the graph is Gromov hyperbolic.

We can also define the notion of Θ-separation as a notion of almost
separation:

Definition (ϵ-almost separation)

We say that F̂ ∈ ΓF ϵ-almost separates σ if there exists ∅ ≠ I ⊂ V such
that

F̂ ∈ Θ(Fx ,Fy ), ∀x ∈ I , y ∈ V \ I .

{I ,V \ I} is called a Θ-separation type of F̂ w.r.t σ.
The collection of all separation types of F̂ with respect to σ is denoted as
SepV (F ).
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Bad things may happen, but......

“Flats” Θ-almost intersecting an edge but not Θ-almost
intersecting the simplex.

Only one edge is ϵ-close to F . This and its variants are the major
threat when we prove Theorem A!

The additional property implies that bad Θ-separation only happens
finitely many times!
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Cut and triangulate
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Story of (actual) separation: graph of “flats”

Let F(V ) be all “flats” in ΓF which actually separates the simplex with
vertices V . We also include Fx for any x ∈ V in F(V ). Assume that

For any x ∈ V , Fx does not separates the simplex.

{Fx}x∈V are pairwise distinct.

Graph of actual separation: GV is a graph with vertices F(V ). Its edges
are defined as follows: two distinct F1 and F2 are joined by an edge if
there are no other “flats” in between them.
Properties of GV :

There is a one-to-one correspondence between polygonal chambers of
the simplex after actual separation, and maximal complete subgraphs
(MCS) of GV .

Every vertex is shared by at most 2 MCS.

Every edge is contained in a unique MCS.

For any W ⊂ V , W -face of the simplex, GW is a subgraph of GV .
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Upgrading to the story of Θ-separation

Troubles:

Multiple separation types for the same “flat”.

Potential bad phenomena. (“flats” Θ-separating an edge but not the
simplex.)

How to resolve:

When constructing vertices of GV , use good “flats” only. Also mark
these flats with good separation types. (Same “flat” with different
separation types are viewed as different vertices).

Use Θ to define edges.

For any W ⊂ V , GW may contain more information than a
corresponding subgraph of GV . (GW is an “enrichment” of a
subgraph of GV .) Tedious technical discussions are needed.

After studying the relations between “polygonal pieces” and GV , one can
use the language of GV to describe the filling process needed for the
construction of higher dimensional straightened simplices.
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Thank you!
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