Simplicial volume and isolated, closed totally geodesic submanifolds of codimension one

Yuping Ruan

December 21, 2024

Ruan, Yuping (Northwestern University)

Positivity of simplicial volume

December 21, 2024

1/99

Table of Contents

Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- Proving positivity of simplicial volume: straightening and bicombing
 - Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction
- Straightening in higher dimensions: a filling argument

Table of Contents

Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Definition

Let M be a connected, closed, oriented topological manifold. For any singular homology class $\alpha \in H_k(M, \mathbb{R})$, the *Gromov norm* $\|\alpha\|$ of α is defined by

$$\|\alpha\| := \inf \left\{ \sum_{i \in I} |a_i| \left| \sum_{i \in I} a_i \sigma_i \text{ is a } k \text{ cycle representing } \alpha \right] \right\}$$

In particular, the Gromov norm of the fundamental class [M] is called the *simplicial volume* of M, which we denote by ||M||.

A rough interpretation of simplicial volume

• Intuitively, the fundamental class of *M* can be thought of as a triangularization of *M*.

A rough interpretation of simplicial volume

- Intuitively, the fundamental class of *M* can be thought of as a triangularization of *M*.
- For any p, q ∈ Z₊, we say that M can be triagularized by a total of p/q top dimensional simplices if a q-fold cover of M can be triagularized using a total of p top dimensional simplices.

A rough interpretation of simplicial volume

- Intuitively, the fundamental class of *M* can be thought of as a triangularization of *M*.
- For any p, q ∈ Z₊, we say that M can be triagularized by a total of p/q top dimensional simplices if a q-fold cover of M can be triagularized using a total of p top dimensional simplices.
- $\|M\|$ can be thought of as the

$$\inf \left\{ m \in \mathbb{R}^+ \; \middle| \; \begin{array}{c} M \text{ can be triagularized by a total of} \\ m \text{ top dimensional simplices.} \end{array} \right\}.$$

In particular, if ||M|| = 0, this means that M can be triangularized as efficiently as possible; if ||M|| > 0, this means one cannot triangularize M as efficiently as possible.

5/99

Example: 2-torus

Fact

When $M = \mathbb{T}^2$, ||M|| = 0.

Image: A matrix

3

Example: 2-torus

Fact

When
$$M = \mathbb{T}^2$$
, $||M|| = 0$.

Proof.

イロト イヨト イヨト -

æ

Fact

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

7/99

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

Proof. (Gromov, Thurston) Observe the following facts:

- *M* admits a Riemannian metric g_0 with constant curvature -1.
- Every triangularization of any finite cover of M can be "deformed" into a triangularization by the same amount of geodesic triangles with respect to the metric g_0 .
- Every geodesic triangle has g_0 -area at most π .

Therefore $||M|| \ge \operatorname{Area}_{g_0}(M)/\pi > 0.$

Example: surface of genus $g \ge 2$ continued

Fact

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

8/99

Gromov hyperbolicity

Definition

A geodesic metric space X is δ -hyperbolic if every geodesic triangle is δ -thin.

A geodesic metric space X is *Gromov hyperbolic* if it is δ -hyperbolic for some $\delta \geq 0$.

Picture source: By Stomatapoll - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22898943.

Example: M with Gromov hyperbolic universal cover

Fact

When the universal cover of M is Gromov hyperbolic, we have ||M|| > 0.

Proof. (Mineyev) Observe the following facts:

- The universal cover of M is Gromov hyperbolic.
- Every triangularization of any finite cover of M can be "deformed" into a special triangularization. Moreover, there exists some uniform constant C > 0 such that

 $\frac{\#\{\text{simplices in the special triangularization}\}}{\#\{\text{simplices in the original triangularization}\}} \le C$

 The special triangularization only involves a finite collection of simplices {σ₁,...,σ_m}.

Therefore $||M|| \ge \operatorname{Area}(M)/C \cdot \max_{1 \le k \le m} \{\operatorname{Area}(\sigma_k)\} > 0$. (Details discussed later.)

Some known results

The simplicial volume ||M|| is positive if

- *M* is negatively curved. (Gromov 82', Thurston 77')
- *M* is a locally symmetric space of non-compact type. (Lafont-Schmidt, 06')
- *M* is nonpositively curved and admits a point with negative curvature (Connell-Wang, 20')
- The universal cover of M is Gromov hyperbolic. (Equivalently, $\pi_1(M)$ is Gromov hyperbolic.) (Mineyev, 01')
- π₁(M) is relatively hyperbolic with respect to a collection of fundamental groups of submanifolds (Mineyev-Yaman (preprint), Franceschini, 18')

Conjecture (Gromov)

If M admits a Riemannian metric with nonpositive sectional curvature and negative definite Ricci curvature, then ||M|| > 0.

Conjecture (Gromov)

If M is aspherical and ||M|| = 0, then the Euler characteristic of M is zero.

Conjecture (Connell-Wang)

If *M* admits a Riemannian metric with nonpositive sectional curvature everywhere and negative definite Ricci curvature at some point, then ||M|| > 0.

Preliminaries

2 Analytic 4-manifolds of nonpositive curvature and main result

- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Definition

A Riemannian submanifold N in a Riemannian manifold M is *totally* geodesic if geodesics in N are also geodesics in M.

Definition

A Riemannian submanifold N in a Riemannian manifold M is *totally* geodesic if geodesics in N are also geodesics in M.

Examples

- When M = ℝⁿ is equipped with the standard Euclidean metric, lower dimensional subspaces are totally geodesic in M.
- When $M = \mathbb{S}^2$ is equipped with the standard spherical metric, great circles are totally geodesic in M.

Definition (Parallel)

Let X be a simply connected, non-positively curved Riemannian manifold. Let $c_1, c_2 : \mathbb{R} \to X$ be geodesics in X. We say that c_1 and c_2 are *parallel* if there exists some $\delta > 0$ such that the following holds:

- c_1 is contained in a δ -neighborhood of c_2 .
- c_2 is contained in a δ -neighborhood of c_1 .

Sandwich lemma

If c_1 and c_2 are parallel, they bound a totally geodesic submanifold isometric to $[0, r] \times \mathbb{R}$ in X.

Definition (Parallel)

Let X be a simply connected, non-positively curved Riemannian manifold. Let $c_1, c_2 : \mathbb{R} \to X$ be geodesics in X. We say that c_1 and c_2 are *parallel* if there exists some $\delta > 0$ such that the following holds:

- c_1 is contained in a δ -neighborhood of c_2 .
- c_2 is contained in a δ -neighborhood of c_1 .

Sandwich lemma

If c_1 and c_2 are parallel, they bound a totally geodesic submanifold isometric to $[0, r] \times \mathbb{R}$ in X.

Some terminologies:

- Flat strip in X: tot, geo. submanifold in X isometric to $[0, r] \times \mathbb{R}$.
- k-flat in X: tot. geo. submanifold in X isometric to \mathbb{R}^k . $(k \ge 2)$

Definition (Isolated)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. Let N be a closed, tot. geo. submanifold of codimension-1. We say that N is *isolated* in M if the following holds: Let F be any lift of N in the universal cover X of M. Then

- (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \pi_1(M)$.
- (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Examples

- M is negatively curved surface, N is the shortest closed geodesic.
- *M* is analytic and rank-one, a lift of *N* in the universal cover of *M* is a codimension-1 flat.

Definition (Rank of a geodesic)

The *rank* of a geodesic is the dimension of the space of parallel Jacobi fields along this geodesic. The rank of a manifold M is the smallest possible rank of geodesics in M.

Definition (Rank of a geodesic)

The *rank* of a geodesic is the dimension of the space of parallel Jacobi fields along this geodesic. The rank of a manifold M is the smallest possible rank of geodesics in M.

- All geodesics have rank at least 1. (Tangent vector field along a geodesic is a parallel Jacobi field)
- If a geodesic is contained in a *k*-flat after lifting to the universal cover, then the rank of this geodesic is at least *k*.

Flats in analytic, nonpositively curved manifolds

Let X be a simply-connected, analytic non-positively curved Riemannian manifold (dim \geq 3) and F be a codimension-1 flat in X.

Flats in analytic, nonpositively curved manifolds

Let X be a simply-connected, analytic non-positively curved Riemannian manifold $(\dim \ge 3)$ and F be a codimension-1 flat in X. Observe the following:

- If a geodesic is contained in a *F*, then the rank of this geodesic is at least *k*.
- The intersection between two different tot. geo. submanifolds is tot. geo.
- Analytic assumption implies that any flat strip in X can be extended to a 2-flat.

Flats in analytic, nonpositively curved manifolds

Let X be a simply-connected, analytic non-positively curved Riemannian manifold $(\dim \ge 3)$ and F be a codimension-1 flat in X. Observe the following:

- If a geodesic is contained in a *F*, then the rank of this geodesic is at least *k*.
- The intersection between two different tot. geo. submanifolds is tot. geo.
- Analytic assumption implies that any flat strip in X can be extended to a 2-flat.

Hence if there is a different flat intersecting F, then X has rank at least 2.

Definition (Isolated)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. Let N be a closed, tot. geo. submanifold of codimension-1. We say that N is *isolated* in M if the following holds: Let F be any lift of N in the universal cover X of M. Then

- (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \pi_1(M)$.
- (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Examples

- M is negatively curved surface, N is the shortest closed geodesic.
- *M* is analytic and rank-one, a lift of *N* in the universal cover of *M* is a codimension-1 flat.

Theorem A (24' Connell-R-Wang)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. If it admits an isolated, closed, totally geodesic submanifold of codimension-1, then the simplicial volume ||M|| > 0.

Theorem A (24' Connell-R-Wang)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. If it admits an isolated, closed, totally geodesic submanifold of codimension-1, then the simplicial volume ||M|| > 0.

Corollary (24' Connell-R-Wang)

Let M be a compact, analytic, non-positively curved Riemannian manifold with dimension at least two. If its universal cover admits a codimension one flat. Then exactly one of the following holds:

- ||M|| > 0.
- *M* has non-trivial Euclidean de Rham factors. (In particular, *M* has rank at least two.

Higher rank manifolds

Higher rank:= "rank \geq 2".

Image: Image:

æ

Higher rank manifolds

Higher rank:= "rank \geq 2".

Examples

The following non-positively curved manifolds have higher rank:

- $M_1 \times M_2$, where M_1 and M_2 are non-positively curved.
- $\Gamma \setminus SL(3, \mathbb{R}) / SO(3)$, where Γ is a lattice in $SL(3, \mathbb{R})$.

Higher rank manifolds

Higher rank:= "rank \geq 2".

Examples

The following non-positively curved manifolds have higher rank:

- $M_1 \times M_2$, where M_1 and M_2 are non-positively curved.
- $\Gamma \setminus SL(3, \mathbb{R}) / SO(3)$, where Γ is a lattice in $SL(3, \mathbb{R})$.

Theorem (Rank rigidity theorem, Ballman, Burns-Spatzier, 87')

Let M be a closed Riemannian manifold with non-positive curvature. Then M has higher rank if and only if one of the following holds:

- The universal cover of *M* splits as a product.
- *M* is locally symmetric.

Maximal higher rank submanifolds (MHRS)

Let *M* be a closed, nonpositively curved Riemannian manifold with universal cover *X*. Let $P : X \to M$ be the covering map.

• Higher rank submanifolds (HRS) of X:= "complete tot. geo. submanifolds of X with rank at least 2."

Maximal higher rank submanifolds (MHRS)

Let *M* be a closed, nonpositively curved Riemannian manifold with universal cover *X*. Let $P : X \to M$ be the covering map.

- Higher rank submanifolds (HRS) of X:= "complete tot. geo. submanifolds of X with rank at least 2."
- Maximal higher rank submanifolds (MHRS) of X = HRS of X which is not properly contained in another HRS.

Maximal higher rank submanifolds (MHRS)

Let *M* be a closed, nonpositively curved Riemannian manifold with universal cover *X*. Let $P : X \to M$ be the covering map.

- Higher rank submanifolds (HRS) of X:= "complete tot. geo. submanifolds of X with rank at least 2."
- Maximal higher rank submanifolds (MHRS) of X:= HRS of X which is not properly contained in another HRS.
- A MHRS in X is closed if its image under P is compact.
Maximal higher rank submanifolds (MHRS)

Let *M* be a closed, nonpositively curved Riemannian manifold with universal cover *X*. Let $P : X \to M$ be the covering map.

- Higher rank submanifolds (HRS) of X:= "complete tot. geo. submanifolds of X with rank at least 2."
- Maximal higher rank submanifolds (MHRS) of X = HRS of X which is not properly contained in another HRS.
- A MHRS in X is closed if its image under P is compact.

Some facts about MHRS:

- Flats are always containd in a MHRS.
- If MHRS (or flats) do not exist, then X is Gromov hyperbolic. In particular, ||M|| > 0 is already known due to Mineyev.

Classification of rank-one analytic 4-manifolds with nonpositive curvature

Theorem (Schroeder, 89')

Let M be a closed, rank one, 4-dimensional analytic manifold of nonpositive curvature, and X be the universal cover of M. Then all MHRS of X are closed. Moreover, for any MHRS F, one of the following holds:

- (1) *F* is a 2-flat.
- (2) F is a 3-flat.
- (3) *F* is isometric to $\Sigma \times \mathbb{R}$, where Σ is a non-flat 2-dimensional Hadamard manifold. There are two cases:
 - (3a) F does not intersect any other MHRS of the same type.
 - (3b) F intersects another MHRS of the same type.

Gromov's conjecture restricted to dimension 4

Conjecture (Gromov)

If *M* is closed, aspherical and ||M|| = 0, then the Euler characteristic of *M* is zero.

Difficult!

In dimension 4, if M is closed, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

In dimension 4, if M is closed, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

Still difficult!

In dimension 4, if M is closed, analytic, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

In dimension 4, if M is closed, analytic, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

Theorem B (23' Connell-R-Wang)

Let *M* be a 4-dimensional closed, analytic manifold of non-positive curvature. If the Euler charateristic of *M* is zero, then *M* has non-trivial Euclidean de Rham factors. In particular, ||M|| = 0.

In dimension 4, if M is closed, analytic, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

Theorem B (23' Connell-R-Wang)

Let *M* be a 4-dimensional closed, analytic manifold of non-positive curvature. If the Euler charateristic of *M* is zero, then *M* has non-trivial Euclidean de Rham factors. In particular, ||M|| = 0.

Main idea of proof:

If Ricci of M degenerate everywhere, this is known due to Guler-Zheng.

In dimension 4, if M is closed, analytic, non-positively curved and ||M|| = 0, then the Euler characteristic of M is zero.

Theorem B (23' Connell-R-Wang)

Let *M* be a 4-dimensional closed, analytic manifold of non-positive curvature. If the Euler charateristic of *M* is zero, then *M* has non-trivial Euclidean de Rham factors. In particular, ||M|| = 0.

Main idea of proof:

If Ricci of M degenerate everywhere, this is known due to Guler-Zheng. If M admits points with negative-definite Ricci, we construct a 2-tensor q. Do a first variation of the Gauss-Bonnet-Chern formula along q to show that there are too many 3-flats in the universal cover of M. Hence Mmust be higher rank. The rest follows from the rank rigidity theorem.

Conjecture

Let *M* be a closed, analytic, non-positively curved 4-manifold. Then ||M|| = 0 if and only if the Euler characteristic of *M* is zero.

Conjecture

Let *M* be a closed, analytic, non-positively curved 4-manifold. Then ||M|| = 0 if and only if the Euler characteristic of *M* is zero.

Theorem (Schroeder, 89')

Let F be a MHRS in the universal cover of M. One of the following holds:

- (1) F is a 2-flat.
- (2) F is a 3-flat.
- (3) *F* is isometric to $\Sigma \times \mathbb{R}$. There are two cases:
 - (3a) F does not intersect any other MHRS of the same type.
 - (3b) F intersects another MHRS of the same type.

Conjecture

Let *M* be a closed, analytic, non-positively curved 4-manifold. Then ||M|| = 0 if and only if the Euler characteristic of *M* is zero.

Theorem (Schroeder, 89')

Let F be a MHRS in the universal cover of M. One of the following holds:

- (1) *F* is a 2-flat.
- (2) F is a 3-flat.
- (3) *F* is isometric to $\Sigma \times \mathbb{R}$. There are two cases:
 - (3a) F does not intersect any other MHRS of the same type.
 - (3b) F intersects another MHRS of the same type.

Progress: Conjecture is true when

- Type (3b) does not exist. (Hruska-Kleiner-Hindawi-Mineyev-Yaman)
- Type (2) or (3a) exist. (Theorem A, 24' Connell-R-Wang)

Preliminaries

2 Analytic 4-manifolds of nonpositive curvature and main result

Proving positivity of simplicial volume: straightening and bicombing

- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Proving ||M|| > 0 via straightening:

2

Proving ||M|| > 0 via straightening:

• Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)

Proving ||M|| > 0 via straightening:

- Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)
- Construct a notion of "volume".

Proving ||M|| > 0 via straightening:

- Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)
- Construct a notion of "volume".
- Construct special simplices such that all special simplices have "volume" uniformly bounded by *A*, where *A* > 0 is a uniform constant.

Proving ||M|| > 0 via straightening:

- Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)
- Construct a notion of "volume".
- Construct special simplices such that all special simplices have "volume" uniformly bounded by *A*, where *A* > 0 is a uniform constant.
- For any simplex σ define the straightened simplex $st(\sigma)$ such that $st(\sigma)$ is a linear combination of special simplices with total weight bounded by *C*, where *C* > 0 is a uniform constant.

Proving ||M|| > 0 via straightening:

- Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)
- Construct a notion of "volume".
- Construct special simplices such that all special simplices have "volume" uniformly bounded by *A*, where *A* > 0 is a uniform constant.
- For any simplex σ define the straightened simplex $\operatorname{st}(\sigma)$ such that $\operatorname{st}(\sigma)$ is a linear combination of special simplices with total weight bounded by C, where C > 0 is a uniform constant.

Then we have

$$\|M\| \geq \frac{\text{``volume'' of } M}{AC} > 0$$

29 / 99

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" $\leq A$.
- Straightened simplex $st(\sigma)$ with $|st(\sigma)|_{l^1} \leq C$.

э

Example: geodesic straightening (Gromov, Thurston)

Fact

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

Proof. (Gromov, Thurston) Observe the following facts:

- *M* admits a Riemannian metric g_0 with constant curvature -1.
- Every triangularization of any finite cover of M can be "deformed" into a triangularization by the same amount of geodesic triangles with respect to the metric g_0 .
- Every geodesic triangle has g_0 -area at most π .

Therefore $||M|| \geq \operatorname{Area}_{g_0}(M)/\pi > 0.$

Example: geodesic straightening (Gromov, Thurston)

Fact

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex
 st(σ) with |st(σ)|_{l¹} ≤ C.

Example: geodesic straightening (Gromov, Thurston)

Fact

When *M* is a closed surface with genus $g \ge 2$, we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Application:

- Hyperbolicity:=constant negative curvature.
- "Volume" := Riemannian volume.
- Special simplices:=geodesic simplices.
- Straightened simplex st(σ) :=geodesic simplex with the same vertices of σ.

Example: barycentric straightening (Lafont-Schmidt, Connell-Wang)

Barycentric construction: Let X, Y be Riemannian manifolds. If there is a smooth function $\Phi : X \times Y \to \mathbb{R}$ such that $\Phi(\cdot; y)$ is strictly convex for any $y \in Y$ which always admits a critical point, then one can construct the corresponding *barycenter map* $\sigma : Y \to X$ by

 $\sigma(y) :=$ the unique critical point of $\Phi(\cdot; y)$.

Example: barycentric straightening (Lafont-Schmidt, Connell-Wang)

Barycentric construction: Let X, Y be Riemannian manifolds. If there is a smooth function $\Phi : X \times Y \to \mathbb{R}$ such that $\Phi(\cdot; y)$ is strictly convex for any $y \in Y$ which always admits a critical point, then one can construct the corresponding *barycenter map* $\sigma : Y \to X$ by

 $\sigma(y) :=$ the unique critical point of $\Phi(\cdot; y)$.

Barycentric simplices: $Y = \Delta$.

Example: barycentric straightening (Lafont-Schmidt, Connell-Wang)

Barycentric construction: Let X, Y be Riemannian manifolds. If there is a smooth function $\Phi : X \times Y \to \mathbb{R}$ such that $\Phi(\cdot; y)$ is strictly convex for any $y \in Y$ which always admits a critical point, then one can construct the corresponding *barycenter map* $\sigma : Y \to X$ by

 $\sigma(y) :=$ the unique critical point of $\Phi(\cdot; y)$.

Barycentric simplices: $Y = \Delta$.

Examples

Let $\sigma : \Delta \to X$ be a singular simplex with vertices p_0, \ldots, p_k . If X is simply-connected and nonpositively curved, one can define the straightened simplex st(σ) as a barycenter map using the following Φ .

•
$$\Phi(q; a_0, ..., a_k) = a_0(d(q, p_0))^2 + ... a_k(d(q, p_k))^2$$
. (Theorem A)

• $\Phi(q; a_0, \ldots, a_k) = a_0 \mathcal{B}(q, p_0) + \ldots a_k \mathcal{B}(q, p_k)$, where \mathcal{B} is a weighted average of Busemann functions. (Besson-Courtois-Gallot, LS, CW)

Example: barycentric straightening (Lafont-Schmidt)

Theorem (Lafont-Schmidt)

When $M = \Gamma \setminus SL(4, n) / SO(4)$ with Γ a co-compact lattice of SL(4, n), we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Theorem (Lafont-Schmidt)

When $M = \Gamma \setminus SL(4, n) / SO(4)$ with Γ a co-compact lattice of SL(4, n), we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ *A*.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Application:

- Hyperbolicity:= "Lots of negative curvature, not very many zero curvature" (Eigenvalue matching, Connell-Farb, 03').
- "Volume" := Riemannian volume.
- Special simplices:=barycentric simplices (Besson-Courtois-Gallot, 90's).
- Straightened simplex
 - st(σ) := barycentric simplex with the same vertices of σ .

Theorem (Connell-Wang)

When *M* is a closed, nonpositively curved Riemannian manifold with strictly negative curvature near a point p_0 , we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ *A*.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Theorem (Connell-Wang)

When M is a closed, nonpositively curved Riemannian manifold with strictly negative curvature near a point p_0 , we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Application:

- Hyperbolicity:=negative curvature near a point.
- "Volume" := ρ(x)dvol, where ρ(x) is supported near p₀. (Local volume.)
- Special simplices:=barycentric simplices (Besson-Courtois-Gallot).
- Straightened simplex
 st(σ) := barycentric simplex with the same vertices of σ.

< □ > < 同 > < 回 > < 回 > < 回 >

35 / 99

Fact

When the universal cover of M is Gromov hyperbolic, we have ||M|| > 0.

Proof. (Mineyev) Observe the following facts:

- The universal cover of M is Gromov hyperbolic.
- Every triangularization of any finite cover of M can be "deformed" into a special triangularization. Moreover, there exists some uniform constant C > 0 such that

 $\frac{\#\{\text{simplices in the special triangularization}\}}{\#\{\text{simplices in the original triangularization}\}} \le C$

 The special triangularization only involves a finite collection of simplices {σ₁,...,σ_m}.

Therefore $||M|| \ge \operatorname{Area}(M)/C \cdot \max_{1 \le k \le m} \{\operatorname{Area}(\sigma_k)\} > 0$. (Details discussed later.)

36 / 99

Fact

When the universal cover of M is Gromov hyperbolic, we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex
 st(σ) with |st(σ)|_{l¹} ≤ C.

Fact

When the universal cover of M is Gromov hyperbolic, we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Application:

- Hyperbolicity:=Gromov hyperbolicity of the universal cover.
- "Volume" := Riemannian volume.
- Special simplices:=A finite collection of simplices {σ₁,...,σ_m}.
- Straightened simplex $st(\sigma) \in span\{\sigma_1, \dots, \sigma_m\}$ with $|st(\sigma)|_{l^1} < C.$

Fact

When the universal cover of M is Gromov hyperbolic, we have ||M|| > 0.

Straightening argument:

- Hyperbolicity.
- "Volume".
- Special simplices with "volume" ≤ A.
- Straightened simplex $\operatorname{st}(\sigma)$ with $|\operatorname{st}(\sigma)|_{l^1} \leq C$.

Application:

- Hyperbolicity:=Gromov hyperbolicity of the universal cover.
- "Volume" := Riemannian volume.
- Special simplices:=A finite collection of simplices {σ₁,...,σ_m}.
- Straightened simplex $st(\sigma) \in span\{\sigma_1, \dots, \sigma_m\}$ with $|st(\sigma)|_{l^1} < C.$

Question: What are the constructions of special/straightened simplices?

< □ > < □ > < □ > < □ > < □ > < □ >

Mineyev's approach

Notations: *M* is a compact Riemannian manifold. *X* is the universal cover of *M* which is Gromov hyperbolic. $\Gamma := \pi_1(M)$. $C_k(X; \mathbb{R})$ the \mathbb{R} -vector space of all *k*-dimensional singular chains in *X*.

Notations: *M* is a compact Riemannian manifold. *X* is the universal cover of *M* which is Gromov hyperbolic. $\Gamma := \pi_1(M)$. $C_k(X; \mathbb{R})$ the \mathbb{R} -vector space of all *k*-dimensional singular chains in *X*.

Proposition ("fake version" of Mineyev, 01)

There is a $\mathbb{R}[\Gamma]$ -chain homomorphism $h_{\bullet} : C_{\bullet}(X; \mathbb{R}) \to C_{\bullet}(X; \mathbb{R})$ such that the following holds:

- $h_k = \text{Id}$ whenever $k \leq 0$.
- When k ≥ 2, for any k-simplex σ, |h_k(σ)|_{l¹} ≤ C(k) for some uniform constant C(k) which only depends on k. (Bounded at level k.)
- When k ≥ 2, the image of h_k is contained in a finitely generated ℝ[Γ]-module.

Remark: This is not the original version of Mineyev's result. The original version uses cellular homology on $E\Gamma$ instead of singular homology on X. (See the next slide.)
Construction of $E\Gamma$: Start with points in Γ .

э

Construction of $E\Gamma$: Start with points in Γ . Glue 1-simplices to all ordered pair of points (γ_0, γ_1) in Γ .

Construction of $E\Gamma$: Start with points in Γ . Glue 1-simplices to all ordered pair of points (γ_0, γ_1) in Γ . Glue 2-simplices to all ordered triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ

Construction of $E\Gamma$: Start with points in Γ . Glue 1-simplices to all ordered pair of points (γ_0, γ_1) in Γ . Glue 2-simplices to all ordered triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ

Cellular chains of $E\Gamma$: $C_k(E\Gamma; \mathbb{R}) := \mathbb{R}$ -vector space spanned by all k-simplices in $E\Gamma$ (equivalently, (k + 1)-ordered tuples of Γ).

Construction of $E\Gamma$: Start with points in Γ . Glue 1-simplices to all ordered pair of points (γ_0, γ_1) in Γ . Glue 2-simplices to all ordered triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ

Cellular chains of $E\Gamma$: $C_k(E\Gamma; \mathbb{R}) := \mathbb{R}$ -vector space spanned by all k-simplices in $E\Gamma$ (equivalently, (k + 1)-ordered tuples of Γ).

Proposition (Mineyev, 01)

There is a $\mathbb{R}[\Gamma]$ -chain homomorphism $h_{\bullet} : C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(E\Gamma; \mathbb{R})$ such that the following holds:

- $h_k = \text{Id}$ whenever $k \leq 0$.
- When k ≥ 2, for any k-simplex σ, |h_k(σ)|_{l¹} ≤ C(k) for some uniform constant C(k) which only depends on k. (Bounded at level k.)
- When $k \ge 2$, the image of h_k is contained in a finitely generated $\mathbb{R}[\Gamma]$ -module.

< □ > < □ > < □ > < □ > < □ > < □ >

Word metric on Γ : Let *S* be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ .

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ .

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \leq K$.

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \leq K$. Glue 2-simplices to all triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ if $d_S(\gamma_i, \gamma_j) \leq K$ for any $i, j \in \{0, 1, 2\}$

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \le K$. Glue 2-simplices to all triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ if $d_S(\gamma_i, \gamma_j) \le K$ for any $i, j \in \{0, 1, 2\}$ **Properties**:

 X is Gromov hyperbolic if and only if (Γ, d_S) is Gromov hyperbolic. (They are quasi-isometric due to Milnor-Svarc)

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \le K$. Glue 2-simplices to all triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ if $d_S(\gamma_i, \gamma_j) \le K$ for any $i, j \in \{0, 1, 2\}$ **Properties**:

- X is Gromov hyperbolic if and only if (Γ, d_S) is Gromov hyperbolic. (They are quasi-isometric due to Milnor-Svarc)
- Y is finite dimensional.

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \le K$. Glue 2-simplices to all triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ if $d_S(\gamma_i, \gamma_j) \le K$ for any $i, j \in \{0, 1, 2\}$ **Properties**:

- X is Gromov hyperbolic if and only if (Γ, d_S) is Gromov hyperbolic. (They are quasi-isometric due to Milnor-Svarc)
- Y is finite dimensional.
- There are only finitely many k-simplices in Y up to Γ action.

Word metric on Γ : Let S be a finite generating set of Γ closed under inverse. The corresponding word metric is defined by

$$d_{\mathcal{S}}(\gamma_1,\gamma_2) := \min\{L \in \mathbb{Z}_{\geq 0} : \gamma_1\gamma_2^{-1} = \gamma_{(1)} \dots \gamma_{(L)}\}.$$

Construction of Rips complex $Y = Y_{\Gamma,K}$: Fix a large number K > 0 and a generating set S of Γ . Start with points in Γ . Glue 1-simplices to all pair of points (γ_0, γ_1) in Γ if $d_S(\gamma_0, \gamma_1) \le K$. Glue 2-simplices to all triple of points $(\gamma_0, \gamma_1, \gamma_2)$ in Γ if $d_S(\gamma_i, \gamma_j) \le K$ for any $i, j \in \{0, 1, 2\}$ **Properties**:

- X is Gromov hyperbolic if and only if (Γ, d_S) is Gromov hyperbolic. (They are quasi-isometric due to Milnor-Svarc)
- Y is finite dimensional.
- There are only finitely many k-simplices in Y up to Γ action.
- When Γ is Gromov hyperbolic and $K \gg 1$, Y is contractible.

Proposition (Mineyev, 01)

There is a $\mathbb{R}[\Gamma]$ -chain homomorphism $h_{\bullet} : C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(E\Gamma; \mathbb{R})$ such that the following holds:

- $h_k = \text{Id}$ whenever $k \leq 0$.
- When k ≥ 2, for any k-simplex σ, |h_k(σ)|_{l¹} ≤ C(k) for some uniform constant C(k) which only depends on k. (Bounded at level k.)
- When $k \ge 2$, the image of h_k is contained in a finitely generated $\mathbb{R}[\Gamma]$ -module.

Proposition (Mineyev, 01)

There is a $\mathbb{R}[\Gamma]$ -chain homomorphism $h_{\bullet} : C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(E\Gamma; \mathbb{R})$ such that the following holds:

- $h_k = \text{Id}$ whenever $k \leq 0$.
- When k ≥ 2, for any k-simplex σ, |h_k(σ)|_{l¹} ≤ C(k) for some uniform constant C(k) which only depends on k. (Bounded at level k.)
- When k ≥ 2, the image of h_k is contained in a finitely generated ℝ[Γ]-module.

Idea of proof: Let Y be a contractible Rips complex of Γ . Then one can construct the following $\mathbb{R}[\Gamma]$ -chain homomorphisms

 $\phi_{\bullet}: C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(Y; \mathbb{R}) \text{ and } \psi_{\bullet}: C_{\bullet}(Y; \mathbb{R}) \to C_{\bullet}(E\Gamma; \mathbb{R})$

which are bounded at level ≥ 2 . $(h_{\bullet} = \psi_{\bullet} \circ \phi_{\bullet})$.

Boundary map: Let $\sigma = (p_0, \ldots, p_k)$ be a *k*-simplex. We define the boundary operator by

$$\partial_k(\sigma) := \sum_{j=0}^k (-1)^j (p_0, \ldots, \widehat{p_j}, \ldots, p_k).$$

э

Boundary map: Let $\sigma = (p_0, \ldots, p_k)$ be a *k*-simplex. We define the boundary operator by

$$\partial_k(\sigma) := \sum_{j=0}^k (-1)^j (p_0, \ldots, \widehat{p_j}, \ldots, p_k).$$

Properties of the $\mathbb{R}[\Gamma]$ -chain homomorphism: $\phi_{\bullet}: C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(Y; \mathbb{R})$

•
$$\partial_k^{\mathbf{Y}} \circ \phi_k = \phi_{k-1} \circ \partial_k^{\mathsf{EI}}$$
.

For any k ≥ 2 and any k-simplex σ in EΓ, there exists some uniform constant C(k) such that |φ_k(σ)|_μ ≤ C(k).

Boundary map: Let $\sigma = (p_0, \ldots, p_k)$ be a *k*-simplex. We define the boundary operator by

$$\partial_k(\sigma) := \sum_{j=0}^k (-1)^j (p_0, \ldots, \widehat{p_j}, \ldots, p_k).$$

Properties of the $\mathbb{R}[\Gamma]$ -chain homomorphism: $\phi_{\bullet}: C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(Y; \mathbb{R})$

•
$$\partial_k^{\mathbf{Y}} \circ \phi_k = \phi_{k-1} \circ \partial_k^{\mathsf{EI}}$$
.

For any k ≥ 2 and any k-simplex σ in EΓ, there exists some uniform constant C(k) such that |φ_k(σ)|_μ ≤ C(k). In particular, |∂^Y_k ∘ φ_k(σ)|_μ ≤ (k + 1)C(k).

Boundary map: Let $\sigma = (p_0, \ldots, p_k)$ be a *k*-simplex. We define the boundary operator by

$$\partial_k(\sigma) := \sum_{j=0}^k (-1)^j (p_0, \ldots, \widehat{p_j}, \ldots, p_k).$$

Properties of the $\mathbb{R}[\Gamma]$ -chain homomorphism: $\phi_{\bullet}: C_{\bullet}(E\Gamma; \mathbb{R}) \to C_{\bullet}(Y; \mathbb{R})$

•
$$\partial_k^Y \circ \phi_k = \phi_{k-1} \circ \partial_k^{E\Gamma}.$$

For any k ≥ 2 and any k-simplex σ in EΓ, there exists some uniform constant C(k) such that |φ_k(σ)|_μ ≤ C(k). In particular, |∂^Y_k ∘ φ_k(σ)|_μ ≤ (k + 1)C(k).

Focus on k = 2: Let $\beta(\gamma_0, \gamma_1) := \phi_1(\gamma_0, \gamma_1)$, then

$$|\beta(\gamma_0,\gamma_1)+\beta(\gamma_1,\gamma_2)+\beta(\gamma_2,\gamma_0)|\leq 3C(1).$$

Main idea: Start with geodesic triangles. Replace each edge by a convex combination of nearby oriented paths. δ -hyperbolicity implies that these new oriented paths have a lot of cancellations.

Step 1: Cut long geodesics [x, y].

Step 2: Construction of f(x, y).

Step 2.5: Construction of $\overline{f}(x, y)$.

Step 3: Use f(x, y) to construct desired nearby paths.

Step 3: Use flowers to construct desired nearby paths.

Step 3: Use flowers to construct desired nearby paths.

Step 3: Use flowers to construct desired nearby paths.

Step 3: Use flowers to construct desired nearby paths.

Step 4: Anti-symmetrize.

Step 4: Anti-symmetrize.

$$\beta(x,y) = \frac{1}{2} \left(\beta'(x,y) - \beta'(y,x) \right)$$

Ruan, Yuping (Northwestern University)

æ
Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
 - 5 Almost separation of simplices by "flats"
- 6 Bicombing construction
 - Straightening in higher dimensions: a filling argument

Proving ||M|| > 0 via straightening:

- Need a notion of hyperbolicity. (e.g. negative curvature, Gromov hyperbolicity, relative hyperbolicity, etc.)
- Construct a notion of "volume".
- Construct special simplices such that all special simplices have "volume" uniformly bounded by *A*, where *A* > 0 is a uniform constant.
- For any simplex σ define the straightened simplex st(σ) such that st(σ) is a linear combination of special simplices with total weight bounded by C, where C > 0 is a uniform constant.

Then we have

$$\|M\| \ge \frac{\text{``volume'' of } M}{AC} > 0$$

Definition (Isolated)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. Let N be a closed, tot. geo. submanifold of codimension-1. We say that N is *isolated* in M if the following holds: Let F be any lift of N in the universal cover X of M. Then

- (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \pi_1(M)$.
- (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Theorem A (24' Connell-R-Wang)

Let M be a compact, non-positively curved Riemannian manifold with dimension at least two. If it admits an isolated, closed, totally geodesic submanifold of codimension-1, then the simplicial volume ||M|| > 0.

Notations

Notations for the rest of this talk:

- M: Compact non-positively curved Riemannian manifold.
- N: An isolated, closed, tot. geo. submanifold of M.
- X: Universal cover of M.
- F: A lift of N. (For simplicity, we call lifts of N as "flats".)
- Γ : Fundamental group of M.
- [x, y]: Geodesic segment connecting x, y in X.
- $\operatorname{Proj}_F : X \to F$: orthogonal projection onto F

Isolated condition

• (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \Gamma$.

• (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Hyperbolicity

Isolated condition

- (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \Gamma$.
- (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Hyperbolicity

Isolated condition

• (No self-intersection) $\gamma F \cap F = \emptyset$ for any $\gamma \in \Gamma$.

 (All geodesic parallel to F is contained in F) If a bi-infinite geodesic in X lies in the r-neighborhood of F for some r > 0, then this geodesic is contained in F.

Key lemma-1: Hyperbolicity perpendicular to the "flats"

There exists some $\delta > 0$ such that for any distinct $x, y, z \in X$ satisfying $y, z \in F$ and $[x, y] \perp F$, the geodesic triangle with vertices x, y, z is δ -thin.

Compare to

Definition (Gromov hyperbolicity)

 δ -hyperbolicity: Every geodesic triangle is δ -thin.

< □ > < □ > < □ > < □ > < □ > < □ >

Hyperbolicity: d([x, y], F) and $d(\operatorname{Proj}_F(x), \operatorname{Proj}_F(y))$

Key lemma-1 implies the following Key lemma:

Key lemma-2: observing d([x, y], F) via $d(\operatorname{Proj}_F(x), \operatorname{Proj}_F(y))$

Let $q_1, q_2 \in X \setminus F$. Denoted by $r_j = \operatorname{Proj}_F(q_j)$, j=1,2.

(1) For any $\epsilon > 0$, there exist some $R_1(\epsilon) > 0$ such that if $d(r_1, r_2) \ge R_1(\epsilon)$, then $d([q_1, q_2], F) \le \epsilon$. In other words, if $d([q_1, q_2], F) > \epsilon$, then $d(r_1, r_2) < R_1(\epsilon)$.

(2) If we assume in addition that q_1, q_2 are on the same side of F, for any r > 0, R > 0, there exists some $c_1(r, R) > 0$ such that if $d(q_j, F) \ge r$, j = 1, 2 and $d(r_1, r_2) \le R$, then $d([q_1, q_2], F) \ge c_1(r, R)$.

Vaguely speaking, the claim "d([x, y], F) is small if and only if $d(\operatorname{Proj}_F(x), \operatorname{Proj}_F(y))$ is large" is true unless

- [x, y] intersects F.
- one of x, y is too close to F.

(日)

A possibly bad simplex

We find it hard to control the total volume of the following simplex because of the codimension-1 face in F:

A possibly bad simplex

We find it hard to control the total volume of the following simplex because of the codimension-1 face in F:

Quick take-away:

- Support of the volume should be away from *N*.
- Vertices of the desired simplices should be away from *N*.

Volume and good simplices

Choice of volume: $\rho(x)d\operatorname{vol}_M$, where $\rho(x)$ is supported in $\{p \in M, d(p, N) \in (\epsilon_5/4, \epsilon_5/2)\}$ for some EXTREEEEEEEEEEMLY small $\epsilon_5 > 0$.

Volume and good simplices

Choice of volume: $\rho(x)d\operatorname{vol}_M$, where $\rho(x)$ is supported in $\{p \in M, d(p, N) \in (\epsilon_5/4, \epsilon_5/2)\}$ for some EXTREEEEEEEEEEMLY small $\epsilon_5 > 0$.

Good simplices: Let $x_0 \in X$ be a fixed point such that $0 < d(x_0, F) = \epsilon_0 \ll 1$, a simplex is *good* if its vertices are in Γx_0 .

Volume and good simplices

Choice of volume: $\rho(x)d\operatorname{vol}_M$, where $\rho(x)$ is supported in $\{p \in M, d(p, N) \in (\epsilon_5/4, \epsilon_5/2)\}$ for some EXTREEEEEEEEEEMLY small $\epsilon_5 > 0$.

Good simplices: Let $x_0 \in X$ be a fixed point such that

 $0 < d(x_0, F) = \epsilon_0 \ll 1$, a simplex is good if its vertices are in Γx_0 .

Lemma

Let σ be a good geodesic (or a good simplex obtained by a suitable barycentric construction) of dimension k in X with vertices p_0, \ldots, p_k . For any 0 < r < R, we define $A_{r,R}(F) := \{q \in X | d(x, F) \in [r, R]\}$. Then there exists $C = C(r, R, \epsilon_0) > 0$ such that

$$\operatorname{Im}(\sigma) \cap A_{r,R}(F) \subset \bigcup_{j=0}^{k} B_{\mathcal{C}}(\operatorname{Proj}_{F}(p_{j})).$$

Review: barycentric straightening (Lafont-Schmidt, Connell-Wang)

Barycentric construction: Let X, Y be Riemannian manifolds. If there is a smooth function $\Phi : X \times Y \to \mathbb{R}$ such that $\Phi(\cdot; y)$ is strictly convex for any $y \in Y$ which always admits a critical point, then one can construct the corresponding *barycenter map* $\sigma : Y \to X$ by

 $\sigma(y) :=$ the unique critical point of $\Phi(\cdot; y)$.

Barycentric simplices: $Y = \Delta$.

Examples

Let $\sigma : \Delta \to X$ be a singular simplex with vertices p_0, \ldots, p_k . If X is simply-connected and nonpositively curved, one can define the straightened simplex $\operatorname{st}(\sigma)$ as a barycenter map using the following Φ .

- $\Phi(q; a_0, ..., a_k) = a_0(d(q, p_0))^2 + ... a_k(d(q, p_k))^2$. (Theorem A)
- $\Phi(q; a_0, \ldots, a_k) = a_0 \mathcal{B}(q, p_0) + \ldots a_k \mathcal{B}(q, p_k)$, where \mathcal{B} is a weighted average of Busemann functions. (Besson-Courtois-Gallot, LS, CW)

Lemma

Let σ be a good geodesic (or a good barycentric simplex) of dimension kin X with vertices p_0, \ldots, p_k . For any 0 < r < R, we define $A_{r,R}(F) := \{q \in X | d(x, F) \in [r, R]\}$. Then there exists $C = C(r, R, \epsilon_0) > 0$ such that

$$\operatorname{Im}(\sigma) \cap A_{r,R}(F) \subset \bigcup_{j=0}^{k} B_{C}(\operatorname{Proj}_{F}(p_{j})).$$

Assume that σ is top-dimensional. Then, **Good geodesic simplex**: $\int_{\sigma} \chi_{A_{r,R}(F)}(x) dvol_X(x) \leq ?????$. **Good barycentric simplex**: $\int_{\sigma} \chi_{A_{r,R}(F)}(x) dvol_X(x) \leq C(r, R, \epsilon_0)$.

Lemma

Let σ be a good geodesic (or a good barycentric simplex) of dimension kin X with vertices p_0, \ldots, p_k . For any 0 < r < R, we define $A_{r,R}(F) := \{q \in X | d(x, F) \in [r, R]\}$. Then there exists $C = C(r, R, \epsilon_0) > 0$ such that

$$\operatorname{Im}(\sigma) \cap A_{r,R}(F) \subset \bigcup_{j=0}^{k} B_{C}(\operatorname{Proj}_{F}(p_{j})).$$

Assume that σ is top-dimensional. Then, **Good geodesic simplex**: $\int_{\sigma} \chi_{A_{r,R}(F)}(x) d \operatorname{vol}_X(x) \leq ?????$. **Good barycentric simplex**: $\int_{\sigma} \chi_{A_{r,R}(F)}(x) d \operatorname{vol}_X(x) \leq C(r, R, \epsilon_0)$.

Barycentric simplices WIN!

Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most N elements in ΓF is ϵ_5 close to any lift of it.

Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most *N* elements in ΓF is ϵ_5 close to any lift of it. **Straightened simplices**: A weighted sum of special simplices whose total weight is at most *C*.

Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most *N* elements in ΓF is ϵ_5 close to any lift of it. **Straightened simplices**: A weighted sum of special simplices whose total weight is at most *C*.

Then for any top dimensional simplex σ in M, its straightened simplex $st(\sigma)$ satisfies

$$\int_{\mathrm{st}(\sigma)} \rho(x) d\mathrm{vol}_M \leq C \cdot \mathsf{NC}'(\epsilon_5, \epsilon_0).$$

Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most *N* elements in ΓF is ϵ_5 close to any lift of it. **Straightened simplices**: A weighted sum of special simplices whose total weight is at most *C*.

Then for any top dimensional simplex σ in M, its straightened simplex $st(\sigma)$ satisfies

$$\int_{\mathrm{st}(\sigma)}
ho(x) d\mathrm{vol}_M \leq C \cdot \mathsf{NC}'(\epsilon_5,\epsilon_0).$$

How to construct straightened simplices:

- Start with a good barycentric simplex.
- "Cut" the 1-skeleton of the large good simplex into smaller pieces using Γ*F*. (Get special simplices.)
- Modify edges using bicombing. (Controlling the total weight.)
- Refill the new 1-skeleton into the straightened simplices.

Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Setting: Let σ be a barycentric simplex in X with vertex set $V \subset \Gamma x_0$. In particular, the 1-skeleton of σ is the collection of geodesic segments joining pairs of vertices in V.

Setting: Let σ be a barycentric simplex in X with vertex set $V \subset \Gamma x_0$. In particular, the 1-skeleton of σ is the collection of geodesic segments joining pairs of vertices in V.

Observation 1: If $\widehat{F} \in \Gamma F$ intersects the 1-skeleton of σ , then there exists $\emptyset \neq I \subsetneq V$ such that

$$d([x,y],\widehat{F})=0, \ \forall x\in I, y\in V\setminus I.$$

Setting: Let σ be a barycentric simplex in X with vertex set $V \subset \Gamma x_0$. In particular, the 1-skeleton of σ is the collection of geodesic segments joining pairs of vertices in V.

Observation 1: If $\widehat{F} \in \Gamma F$ intersects the 1-skeleton of σ , then there exists $\emptyset \neq I \subsetneq V$ such that

$$d([x,y],\widehat{F})=0, \ \forall x\in I, y\in V\setminus I.$$

Observation 2: The above choice of the unordered pair $\{I, V \setminus I\}$ is unique. In other words, for any distinct vertices $x, y \in V$

$$d([x,y],\widehat{F}) = 0 \text{ iff } |\{x,y\} \cap V| = 1.$$

Setting: Let σ be a barycentric simplex in X with vertex set $V \subset \Gamma x_0$. In particular, the 1-skeleton of σ is the collection of geodesic segments joining pairs of vertices in V.

Observation 1: If $\widehat{F} \in \Gamma F$ intersects the 1-skeleton of σ , then there exists $\emptyset \neq I \subsetneq V$ such that

$$d([x,y],\widehat{F})=0, \ \forall x\in I, y\in V\setminus I.$$

Observation 2: The above choice of the unordered pair $\{I, V \setminus I\}$ is unique. In other words, for any distinct vertices $x, y \in V$

$$d([x,y],\widehat{F}) = 0 \text{ iff } |\{x,y\} \cap V| = 1.$$

Observation 3: Let $W \subset V$. The *W*-face of σ is the face of σ whose vertex set is exactly *W*.

Setting: Let σ be a barycentric simplex in X with vertex set $V \subset \Gamma x_0$. In particular, the 1-skeleton of σ is the collection of geodesic segments joining pairs of vertices in V.

Observation 1: If $\widehat{F} \in \Gamma F$ intersects the 1-skeleton of σ , then there exists $\emptyset \neq I \subsetneq V$ such that

$$d([x,y],\widehat{F})=0, \ \forall x\in I, y\in V\setminus I.$$

Observation 2: The above choice of the unordered pair $\{I, V \setminus I\}$ is unique. In other words, for any distinct vertices $x, y \in V$

$$d([x,y],\widehat{F})=0$$
 iff $|\{x,y\}\cap V|=1.$

Observation 3: Let $W \subset V$. The *W*-face of σ is the face of σ whose vertex set is exactly *W*. If in addition that \widehat{F} intersects the 1-skeleton of σ , then for any distinct vertices $x, y \in W$

$$d([x,y],\widehat{F}) = 0 \text{ iff } |\{x,y\} \cap W| = 1.$$

Actual separation

Actural separation: We say that $\widehat{F} \in \Gamma F$ (actually) separates σ if \widehat{F} intersects the 1-skeleton of σ .

Actual separation

Actural separation: We say that $\widehat{F} \in \Gamma F$ (actually) separates σ if \widehat{F} intersects the 1-skeleton of σ .

Separation type: Let $\emptyset \neq I \subset V$. We say that the unordered pair $\{I, V \setminus I\}$ is an (actual) separation type for \widehat{F} w.r.t σ if

$$d([x,y],\widehat{F})=0, \ \forall x\in I, y\in V\setminus I.$$

Properties:

- (Ob. 2) Actual separation types are unique.
- (Ob. 3) Let $\operatorname{Res}_W^V(\{I, V \setminus I\}) := \{I \cap W, W \setminus I\}$. If $\{I, V \setminus I\}$ is an actual separation type for \widehat{F} w.r.t σ , then $\operatorname{Res}_W^V(\{I, V \setminus I\})$ is also an actual separation type for \widehat{F} w.r.t the *W*-face of σ .
- (Ob. 4) Let F₁, F₂ ∈ ΓF be distinct elements with separation types {*l*₁, V \ *l*₁}, {*l*₂, V \ *l*₂} respectively. Then WLOG, we can assume that *l*₁ ∩ *l*₂ = Ø.

Isolatedness and Ob. 4

Observation 4: Let $F_1, F_2 \in \Gamma F$ be distinct elements with separation types $\{l_1, V \setminus l_1\}, \{l_2, V \setminus l_2\}$ respectively. Then WLOG, we can assume that $l_1 \cap l_2 = \emptyset$.

Problem with actual separation

A Review on our constructions in the straightening arguments:

- Volume: $\rho(x) \operatorname{dvol}_M$, where $\rho(x)$ is supported in $\{p \in M, d(p, N) \in (\epsilon_5/4, \epsilon_5/2)\}$ for some EXTREEEEEEEEEEEEEMLY small $\epsilon_5 > 0$.
- Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most N elements in ΓF is ϵ_5 close to any lift of it.
- **Straightened simplices**: A weighted sum of special simplices whose total weight is at most *C*.

Problem with actual separation

A Review on our constructions in the straightening arguments:

- Volume: $\rho(x) \operatorname{dvol}_M$, where $\rho(x)$ is supported in $\{p \in M, d(p, N) \in (\epsilon_5/4, \epsilon_5/2)\}$ for some EXTREEEEEEEEEEEEEMLY small $\epsilon_5 > 0$.
- Special simplices: Any lift of a special simplex σ is a special barycentric simplex. Moreover, at most N elements in ΓF is ϵ_5 close to any lift of it.
- **Straightened simplices**: A weighted sum of special simplices whose total weight is at most *C*.

Problem: If a "flat" does not intersects a simplex but is close to the simplex, it contributes to volume. We should consider these "flats" as well!

Definition (ϵ -almost separation)

We say that $\widehat{F} \in \Gamma F \ \epsilon$ -almost separates σ if there exists $\emptyset \neq I \subset V$ such that

$$d([x,y],\widehat{F}) \leq \epsilon, \ \forall x \in I, y \in V \setminus I.$$

 $\{I, V \setminus I\}$ is called an ϵ -almost separation type of \widehat{F} w.r.t σ . The collection of all separation types of \widehat{F} with respect to σ is denoted as $\operatorname{Sep}_V(F)$.

Definition (ϵ -almost separation)

We say that $\widehat{F} \in \Gamma F \ \epsilon$ -almost separates σ if there exists $\emptyset \neq I \subset V$ such that

$$d([x,y],\widehat{F}) \leq \epsilon, \ \forall x \in I, y \in V \setminus I.$$

 $\{I, V \setminus I\}$ is called an ϵ -almost separation type of \widehat{F} w.r.t σ . The collection of all separation types of \widehat{F} with respect to σ is denoted as $\operatorname{Sep}_V(F)$.

Remark: When $\epsilon = 0$, this is the same as actual separation.

Properties of actual separation:

- (Ob. 2) Actual separation types are unique.
- (Ob. 3) Let $\operatorname{Res}_W^V(\{I, V \setminus I\}) := \{I \cap W, W \setminus I\}$. If $\{I, V \setminus I\}$ is an actual separation type for \widehat{F} w.r.t σ , then $\operatorname{Res}_W^V(\{I, V \setminus I\})$ is also an actual separation type for \widehat{F} w.r.t the *W*-face of σ .
- (Ob. 4) Let F₁, F₂ ∈ ΓF be distinct elements with separation types {I₁, V \ I₁}, {I₂, V \ I₂} respectively. Then WLOG, we can assume that I₁ ∩ I₂ = Ø.

Properties of almost separation:

- (Ob. 2) Almost separation types are NOT unique.
- (Ob. 3) Let Res^V_W({I, V \ I}) := {I ∩ W, W \ I}. If {I, V \ I} is an ε-almost separation type for F̂ w.r.t σ, then Res^V_W({I, V \ I}) is also an ε-almost separation type for F̂ w.r.t the W-face of σ.
- (**Ob.** 4) Assume that $\epsilon < \epsilon_0 \ll 1$. Let $F_1, F_2 \in \Gamma F$ be distinct elements with ϵ -almost separation types $\{I_1, V \setminus I_1\}, \{I_2, V \setminus I_2\}$ respectively. Then WLOG, we can assume that $I_1 \cap I_2 = \emptyset$.

Properties of almost separation:

- (Ob. 2) Almost separation types are NOT unique.
- (Ob. 3) Let Res^V_W({I, V \ I}) := {I ∩ W, W \ I}. If {I, V \ I} is an ε-almost separation type for F w.r.t σ, then Res^V_W({I, V \ I}) is also an ε-almost separation type for F w.r.t the W-face of σ.
- (**Ob.** 4) Assume that $\epsilon < \epsilon_0 \ll 1$. Let $F_1, F_2 \in \Gamma F$ be distinct elements with ϵ -almost separation types $\{l_1, V \setminus l_1\}, \{l_2, V \setminus l_2\}$ respectively. Then WLOG, we can assume that $l_1 \cap l_2 = \emptyset$.
- For any ε > 0, there exists some constant c(ε) ∈ (0, ε) such that if F does not ε-almost separate σ, then d(σ, F) ≥ c(ε). Therefore, the volume of σ is only related to "flats" which almost separates it!

Possible bizarre phenomena

Multiple almost separation types:

All three edges are ϵ -close to F. This makes our notations and definitions more complicated. However, this does not cause any essential trouble for us.
Possible bizarre phenomena

"Flats" ϵ -almost intersecting an edge but not ϵ -almost intersecting the simplex.

Only one edge is ϵ -close to F. This and its variants are the major threat when we prove Theorem A!

Possible bizarre phenomena

Edges getting ϵ -almost separated, but not revealed by separation types: Let x, y be distinct vertices in V. The following is possible:

- $\widehat{F} \epsilon$ -almost separate [x, y] and σ .
- For any *ϵ*-almost separation type {*I*, *V* \ *I*}, either *x*, *y* ∈ *I* or *x*, *y* ∈ *V* \ *I*.

Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Mineyev's bicombing construction revisited

Key steps:

- Step 1: Cut long geodesics.
- Step 2: Construct f(x, y) inductively. (This step is the key to control $|\cdot|_{l^1}$ of the boundary of a 2-simplex.)
- Step 3: Use f(x, y) or $\overline{f}(x, y)$ to construct $\beta'(x, y)$.
- Step 4: Anti-symmetrize.

Mineyev's bicombing construction revisited

Key steps:

- Step 1: Cut long geodesics.
- Step 2: Construct f(x, y) inductively. (This step is the key to control $|\cdot|_{l^1}$ of the boundary of a 2-simplex.)
- Step 3: Use f(x, y) or $\overline{f}(x, y)$ to construct $\beta'(x, y)$.
- Step 4: Anti-symmetrize.

Main challenges:

- Step 1: How to cut?
- Step 2: How to construct f(x, y) and ensure enough cancellation?
- Step 3 and Step 4 are not problematic for us.

Cutting long edges

Natural cutting: Cut a long geodesic using "flats" that are ϵ -almost separating the edge.

э

Problem: In the picture, the cutting along [x, p] may be unrelated to the cutting along [x, y].

Problem: In the picture, the cutting along [x, p] may be unrelated to the cutting along [x, y]. **Good news**: Vertices of geodesic segments that we care about are all close to a unique "flat".

Problem: In the picture, the cutting along [x, p] may be unrelated to the cutting along [x, y].

Good news: Vertices of geodesic segments that we care about are all close to a unique "flat".

Resolving the issue: We cut the geodesic [x, y] only by "flats" that are between F_x and F_y . This notion of "in-between" must satisfy some "linear ordering". (To be explained in the next slide.)

In-between for "flats"

"In-between": For any \widehat{F} , F_1 , $F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

- $\widehat{F} = F_1$ or F_2 .
- F_1 and F_2 are on two different sides of \hat{F} .

In-between for "flats"

"In-between": For any \widehat{F} , F_1 , $F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

- $\widehat{F} = F_1$ or F_2 .
- F_1 and F_2 are on two different sides of \hat{F} .

Properties of "in-between" for real numbers: let a, b be real numbers.

- If c is between a and b, then any real number d which is between a and c is also between a and b
- If c is between a and b, then c is the real number which is simultaneously between a and c and between c and b.

Properties of "in-between": (Linear ordering properties)

- If F₃ is between F₁ and F₂, then any element F
 ∈ ΓF which is between F₁ and F₃ is also between F₁ and F₂
- If F₃ is between F₁ and F₂, then F₃ is the unique element in ΓF which is simultaneously between F₁ and F₃ and between F₃ and F₂.

Problems with ϵ -almost in-between

Attempt 1: For any \widehat{F} , F_1 , $F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

- $\widehat{F} = F_1$ or F_2 .
- There exists some p_i near F_i such that $\hat{F} \epsilon$ -almost separates $[p_1, p_2]$.

Problems with ϵ -almost in-between

Attempt 1: For any \widehat{F} , F_1 , $F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

• $\widehat{F} = F_1$ or F_2 .

• There exists some p_i near F_i such that $\widehat{F} \epsilon$ -almost separates $[p_1, p_2]$. **Attempt 2**: For any $\widehat{F}, F_1, F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

•
$$\widehat{F} = F_1$$
 or F_2 .

• For any p_i near F_i , i = 1, 2, the element $\widehat{F} \epsilon$ -almost separates $[p_1, p_2]$.

Problems with ϵ -almost in-between

Attempt 1: For any \widehat{F} , F_1 , $F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

• $\widehat{F} = F_1$ or F_2 .

• There exists some p_i near F_i such that $\widehat{F} \epsilon$ -almost separates $[p_1, p_2]$. **Attempt 2**: For any $\widehat{F}, F_1, F_2 \in \Gamma F$, \widehat{F} is between F_1 and F_2 if either of the following holds:

•
$$\widehat{F} = F_1$$
 or F_2 .

• For any p_i near F_i , i = 1, 2, the element $\widehat{F} \epsilon$ -almost separates $[p_1, p_2]$. **Problem**: It is hard to tell whether linear ordering properties hold for any of the above definition of " ϵ -almost in-between".

Recall that for any $x \in \Gamma x_0$, $d(x, F_x) \le \epsilon_0 \ll 1$. Choose $0 < \epsilon_2 \ll \epsilon_1 \ll \epsilon_0$.

Recall that for any $x \in \Gamma x_0$, $d(x, F_x) \le \epsilon_0 \ll 1$. Choose $0 < \epsilon_2 \ll \epsilon_1 \ll \epsilon_0$.

Definition of $\Omega(\cdot, \cdot)$

For any $F_1, F_2 \in \Gamma F$, we define $\Omega_0(F_1, F_2) \subset \Gamma F$ such that

$$\Omega_0(F_1, F_2) = \left\{ \widehat{F} \in \Gamma F \middle| \begin{array}{l} \exists p_j \in X \text{ s.t. } d(p_j, F_j) \leq \epsilon_0, j = 1, 2, \\ \text{and } d([p_1, p_2], \widehat{F}) < \epsilon_2. \end{array} \right\}$$

Recall that for any $x \in \Gamma x_0$, $d(x, F_x) \le \epsilon_0 \ll 1$. Choose $0 < \epsilon_2 \ll \epsilon_1 \ll \epsilon_0$.

Definition of $\Omega(\cdot, \cdot)$

For any $F_1, F_2 \in \Gamma F$, we define $\Omega_0(F_1, F_2) \subset \Gamma F$ such that

$$\Omega_0(F_1, F_2) = \left\{ \widehat{F} \in \Gamma F \middle| \begin{array}{l} \exists p_j \in X \text{ s.t. } d(p_j, F_j) \leq \epsilon_0, j = 1, 2, \\ \text{and } d([p_1, p_2], \widehat{F}) < \epsilon_2. \end{array} \right\}$$

Inductively we define

$$\Omega_k(F_1,F_2):=\bigcup_{F',F''\in\Omega_{k-1}(F_1,F_2)}\Omega_0(F',F'').$$

Recall that for any $x \in \Gamma x_0$, $d(x, F_x) \le \epsilon_0 \ll 1$. Choose $0 < \epsilon_2 \ll \epsilon_1 \ll \epsilon_0$.

Definition of $\Omega(\cdot, \cdot)$

For any $F_1, F_2 \in \Gamma F$, we define $\Omega_0(F_1, F_2) \subset \Gamma F$ such that

$$\Omega_0(F_1, F_2) = \left\{ \widehat{F} \in \Gamma F \middle| \begin{array}{l} \exists p_j \in X \text{ s.t. } d(p_j, F_j) \leq \epsilon_0, j = 1, 2, \\ \text{and } d([p_1, p_2], \widehat{F}) < \epsilon_2. \end{array} \right\}$$

Inductively we define

$$\Omega_k(F_1,F_2):=\bigcup_{F',F''\in\Omega_{k-1}(F_1,F_2)}\Omega_0(F',F'').$$

Finally, we define

$$\Omega(F_1,F_2):=\bigcup_{j=0}^{\infty}\Omega_k(F_1,F_2).$$

Ruan, Yuping (Northwestern University)

Positivity of simplicial volume

88 / 99

Properties of $\Omega(\cdot, \cdot)$: (Think about $\Omega(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

э

Properties of $\Omega(\cdot, \cdot)$: (Think about $\Omega(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

• For any $\widehat{F} \in \Omega(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \epsilon_1$ -almost separates $[x_1, x_2]$.

Properties of $\Omega(\cdot, \cdot)$: (Think about $\Omega(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

- For any $\widehat{F} \in \Omega(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \epsilon_1$ -almost separates $[x_1, x_2]$.
- For any $F_3 \in \Omega(F_1, F_2)$, $\Omega(F_1, F_3) \subset \Omega(F_1, F_2)$ and $\Omega(F_3, F_2) \subset \Omega(F_1, F_2)$.
- For any $F_3 \in \Omega(F_1, F_2)$, we have $\Omega(F_1, F_3) \cap \Omega(F_3, F_2) = \{F_3\}$.

Properties of $\Omega(\cdot, \cdot)$: (Think about $\Omega(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

- For any $\widehat{F} \in \Omega(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0, F \epsilon_1$ -almost separates $[x_1, x_2]$.
- For any $F_3 \in \Omega(F_1, F_2)$, $\Omega(F_1, F_3) \subset \Omega(F_1, F_2)$ and $\Omega(F_3, F_2) \subset \Omega(F_1, F_2).$
- For any $F_3 \in \Omega(F_1, F_2)$, we have $\Omega(F_1, F_3) \cap \Omega(F_3, F_2) = \{F_3\}$.

Properties of "in-between": (Linear ordering properties)

- If F_3 is between F_1 and F_2 , then any element $\hat{F} \in \Gamma F$ which is between F_1 and F_3 is also between F_1 and F_2
- If F_3 is between F_1 and F_2 , then F_3 is the unique element in ΓF which is simultaneously between F_1 and F_3 and between F_3 and F_2 .

3

89 / 99

Main problem with $\Omega(\cdot, \cdot)$

Key steps:

- Step 1: Cut long geodesics.
- Step 2: Construct f(x, y) inductively. (This step is the key to control $|\cdot|_{l^1}$ of the boundary of a 2-simplex.)
- Step 3: Use f(x, y) or $\overline{f}(x, y)$ to construct $\beta'(x, y)$.
- Step 4: Anti-symmetrize.

Main problem with $\Omega(\cdot, \cdot)$

Key steps:

- Step 1: Cut long geodesics.
- Step 2: Construct f(x, y) inductively. (This step is the key to control $|\cdot|_{l^1}$ of the boundary of a 2-simplex.)
- Step 3: Use f(x, y) or $\overline{f}(x, y)$ to construct $\beta'(x, y)$.
- Step 4: Anti-symmetrize.

Main challenges:

- Step 1: How to cut? (Resolved by $\Omega(\cdot, \cdot)$)
- Step 2: How to construct f(x, y) and ensure enough cancellation?
- Step 3 and Step 4 are not problematic for us.

Main problem with $\Omega(\cdot, \cdot)$

Key steps:

- Step 1: Cut long geodesics.
- Step 2: Construct f(x, y) inductively. (This step is the key to control $|\cdot|_{l^1}$ of the boundary of a 2-simplex.)
- Step 3: Use f(x, y) or $\overline{f}(x, y)$ to construct $\beta'(x, y)$.
- Step 4: Anti-symmetrize.

Main challenges:

- Step 1: How to cut? (Resolved by $\Omega(\cdot, \cdot)$)
- Step 2: How to construct f(x, y) and ensure enough cancellation?
- Step 3 and Step 4 are not problematic for us.

Problem with Ω :

One can perform Step 2 as well with $\Omega(\cdot, \cdot)$, but it is unclear cancellations are enough.

3

Definition of $\Theta(\cdot, \cdot)$

Let $0 < \epsilon_4 \ll \epsilon_3 \ll \epsilon_2$. For any $F_1, F_2 \in \Gamma F$, we define

$$\Theta_0(F_1,F_2) = \{F_1,F_2\} \cup \left\{ \widehat{F} \in \mathsf{\Gamma} F \left| \begin{array}{l} \exists p_j' \in X \text{ and } F_j' \in \Omega(F_1,F_2) \\ \text{s.t. } \widehat{F} \neq F_j', d(p_j',F_j') \leq \epsilon_0, j = 1,2, \\ \text{and } d([p_1',p_2'],\widehat{F}) < \epsilon_4 \end{array} \right\} \right\}$$

Similar to $\Omega(\cdot, \cdot)$, we define

$$\Theta_k(F_1,F_2):=\bigcup_{F',F''\in\Theta_{k-1}(F_1,F_2)}\Theta_0(F',F'').$$

Finally, we define

$$\Theta(F_1,F_2):=\bigcup_{j=0}^{\infty}\Theta_k(F_1,F_2).$$

Ruan, Yuping (Northwestern University)

91 / 99

Properties of $\Theta(\cdot, \cdot)$ (similar to those of $\Omega(\cdot, \cdot)$): (Think about $\Theta(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

э

Properties of $\Theta(\cdot, \cdot)$ **(similar to those of** $\Omega(\cdot, \cdot)$ **)**: (Think about $\Theta(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

• For any $\widehat{F} \in \Theta(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \epsilon_3$ -almost separates $[x_1, x_2]$.

Properties of $\Theta(\cdot, \cdot)$ (similar to those of $\Omega(\cdot, \cdot)$): (Think about $\Theta(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

- For any $\widehat{F} \in \Theta(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \in \epsilon_3$ -almost separates $[x_1, x_2]$.
- For any $F_3 \in \Theta(F_1, F_2)$, $\Theta(F_1, F_3) \subset \Theta(F_1, F_2)$ and $\Theta(F_3, F_2) \subset \Theta(F_1, F_2)$.
- For any $F_3 \in \Theta(F_1, F_2)$, we have $\Theta(F_1, F_3) \cap \Theta(F_3, F_2) = \{F_3\}$.

Properties of $\Theta(\cdot, \cdot)$ **(similar to those of** $\Omega(\cdot, \cdot)$ **)**: (Think about $\Theta(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

- For any $\widehat{F} \in \Theta(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \in \epsilon_3$ -almost separates $[x_1, x_2]$.
- For any $F_3 \in \Theta(F_1, F_2)$, $\Theta(F_1, F_3) \subset \Theta(F_1, F_2)$ and $\Theta(F_3, F_2) \subset \Theta(F_1, F_2)$.
- For any $F_3 \in \Theta(F_1, F_2)$, we have $\Theta(F_1, F_3) \cap \Theta(F_3, F_2) = \{F_3\}$.

Additional property of $\Theta(\cdot, \cdot)$: Let $\mathcal{F}(x, y, z) := \Theta(F_x, F_y) \cup \Theta(F_y, F_z) \cup \Theta(F_z, F_x),$ $\mathcal{F}_x(y, z) := \Theta(F_x, F_y) \cap \Theta(F_y, F_z), \ \mathcal{F}_y(z, x) := \Theta(F_y, F_z) \cap \Theta(F_y, F_x),$ $\mathcal{F}_z(x, y) := \Theta(F_z, F_x) \cap \Theta(F_z, F_y) \text{ and}$

$$\mathcal{A}(x,y,z) := \mathcal{F}_x(y,z) \cup \mathcal{F}_y(z,x) \cup \mathcal{F}_z(x,y).$$

イロト イ理ト イヨト イヨト

3

92 / 99

Properties of $\Theta(\cdot, \cdot)$ **(similar to those of** $\Omega(\cdot, \cdot)$ **)**: (Think about $\Theta(F_1, F_2)$ as those "flats" which are almost between F_1 and F_2 .)

- For any $\widehat{F} \in \Theta(F_1, F_2) \setminus \{F_1, F_2\}$ and any x_1, x_2 such that $d(x_i, F_i) < \epsilon_0$, $\widehat{F} \in \epsilon_3$ -almost separates $[x_1, x_2]$.
- For any $F_3 \in \Theta(F_1, F_2)$, $\Theta(F_1, F_3) \subset \Theta(F_1, F_2)$ and $\Theta(F_3, F_2) \subset \Theta(F_1, F_2)$.
- For any $F_3 \in \Theta(F_1, F_2)$, we have $\Theta(F_1, F_3) \cap \Theta(F_3, F_2) = \{F_3\}$.

Additional property of $\Theta(\cdot, \cdot)$: Let $\mathcal{F}(x, y, z) := \Theta(F_x, F_y) \cup \Theta(F_y, F_z) \cup \Theta(F_z, F_x),$ $\mathcal{F}_x(y, z) := \Theta(F_x, F_y) \cap \Theta(F_y, F_z), \ \mathcal{F}_y(z, x) := \Theta(F_y, F_z) \cap \Theta(F_y, F_x),$ $\mathcal{F}_z(x, y) := \Theta(F_z, F_x) \cap \Theta(F_z, F_y)$ and

$$\mathcal{A}(x,y,z) := \mathcal{F}_x(y,z) \cup \mathcal{F}_y(z,x) \cup \mathcal{F}_z(x,y).$$

Then

$$|\mathcal{F}(x,y,z) \setminus \mathcal{A}(x,y,z)| \leq 3.$$

3

• If we replace Ω with Θ , the bicombing construction works completely with the desired norm control.

- If we replace Ω with Θ , the bicombing construction works completely with the desired norm control.
- Consider the following graph: vertices are ΓF; two distinct vertices F₁ and F₂ are joined by an edge if and only if Θ(F₁, F₂) = {F₁, F₂}.

- If we replace Ω with Θ, the bicombing construction works completely with the desired norm control.
- Consider the following graph: vertices are ΓF; two distinct vertices F₁ and F₂ are joined by an edge if and only if Θ(F₁, F₂) = {F₁, F₂}. Then the graph is Gromov hyperbolic.

- If we replace Ω with Θ , the bicombing construction works completely with the desired norm control.
- Consider the following graph: vertices are ΓF; two distinct vertices F₁ and F₂ are joined by an edge if and only if Θ(F₁, F₂) = {F₁, F₂}. Then the graph is Gromov hyperbolic.

We can also define the notion of Θ -separation as a notion of almost separation:

Definition (ϵ -almost separation)

We say that $\widehat{F} \in \Gamma F \ \epsilon$ -almost separates σ if there exists $\emptyset \neq I \subset V$ such that

$$\widehat{F} \in \Theta(F_x, F_y), \ \forall x \in I, y \in V \setminus I.$$

 $\{I, V \setminus I\}$ is called a Θ -separation type of \widehat{F} w.r.t σ . The collection of all separation types of \widehat{F} with respect to σ is denoted as $\operatorname{Sep}_V(F)$.
Interpreting the additional property

- If we replace Ω with Θ , the bicombing construction works completely with the desired norm control.
- Consider the following graph: vertices are ΓF; two distinct vertices F₁ and F₂ are joined by an edge if and only if Θ(F₁, F₂) = {F₁, F₂}. Then the graph is Gromov hyperbolic.

We can also define the notion of Θ -separation as a notion of almost separation:

Definition (ϵ -almost separation)

We say that $\widehat{F} \in \Gamma F \ \epsilon$ -almost separates σ if there exists $\emptyset \neq I \subset V$ such that

$$\widehat{F} \in \Theta(F_x, F_y), \ \forall x \in I, y \in V \setminus I.$$

 $\{I, V \setminus I\}$ is called a Θ -separation type of \widehat{F} w.r.t σ . The collection of all separation types of \widehat{F} with respect to σ is denoted as $\operatorname{Sep}_V(F)$.

Bad things may happen, but.....

"Flats" Θ -almost intersecting an edge but not Θ -almost intersecting the simplex.

Only one edge is ϵ -close to F. This and its variants are the major threat when we prove Theorem A!

Bad things may happen, but.....

"Flats" Θ -almost intersecting an edge but not Θ -almost intersecting the simplex.

Only one edge is ϵ -close to F. This and its variants are the major threat when we prove Theorem A! The additional property implies that bad Θ -separation only happens finitely many times!

Preliminaries

- 2 Analytic 4-manifolds of nonpositive curvature and main result
- 3 Proving positivity of simplicial volume: straightening and bicombing
- Idea of the proof
- 5 Almost separation of simplices by "flats"
- 6 Bicombing construction

Straightening in higher dimensions: a filling argument

Cut and triangulate

weighted sum of

문 문 문

96 / 99

Story of (actual) separation: graph of "flats"

Let $\mathcal{F}(V)$ be all "flats" in ΓF which actually separates the simplex with vertices V. We also include F_x for any $x \in V$ in $\mathcal{F}(V)$. Assume that

- For any $x \in V$, F_x does not separates the simplex.
- $\{F_x\}_{x \in V}$ are pairwise distinct.

Graph of actual separation: \mathbf{G}_V is a graph with vertices $\mathcal{F}(V)$. Its edges are defined as follows: two distinct F_1 and F_2 are joined by an edge if there are no other "flats" in between them.

Properties of G_V:

- There is a one-to-one correspondence between polygonal chambers of the simplex after actual separation, and maximal complete subgraphs (MCS) of G_V.
- Every vertex is shared by at most 2 MCS.
- Every edge is contained in a unique MCS.
- For any $W \subset V$, W-face of the simplex, \mathbf{G}_W is a subgraph of \mathbf{G}_V .

< □ > < □ > < □ > < □ > < □ > < □ >

Upgrading to the story of $\Theta\mbox{-separation}$

Troubles:

- Multiple separation types for the same "flat".
- \bullet Potential bad phenomena. ("flats" $\Theta\mbox{-separating}$ an edge but not the simplex.)

- Multiple separation types for the same "flat".
- Potential bad phenomena. ("flats" Θ-separating an edge but not the simplex.)

How to resolve:

• When constructing vertices of G_V , use good "flats" only. Also mark these flats with good separation types. (Same "flat" with different separation types are viewed as different vertices).

- Multiple separation types for the same "flat".
- Potential bad phenomena. ("flats" Θ-separating an edge but not the simplex.)

How to resolve:

- When constructing vertices of **G**_V, use good "flats" only. Also mark these flats with good separation types. (Same "flat" with different separation types are viewed as different vertices).
- Use Θ to define edges.

- Multiple separation types for the same "flat".
- Potential bad phenomena. ("flats" Θ-separating an edge but not the simplex.)

How to resolve:

- When constructing vertices of G_V , use good "flats" only. Also mark these flats with good separation types. (Same "flat" with different separation types are viewed as different vertices).
- Use Θ to define edges.
- For any W ⊂ V, G_W may contain more information than a corresponding subgraph of G_V. (G_W is an "enrichment" of a subgraph of G_V.) Tedious technical discussions are needed.

98 / 99

- Multiple separation types for the same "flat".
- Potential bad phenomena. ("flats" Θ-separating an edge but not the simplex.)

How to resolve:

- When constructing vertices of G_V , use good "flats" only. Also mark these flats with good separation types. (Same "flat" with different separation types are viewed as different vertices).
- Use Θ to define edges.
- For any W ⊂ V, G_W may contain more information than a corresponding subgraph of G_V. (G_W is an "enrichment" of a subgraph of G_V.) Tedious technical discussions are needed.

After studying the relations between "polygonal pieces" and G_V , one can use the language of G_V to describe the filling process needed for the construction of higher dimensional straightened simplices.

Thank you!

3

< □ > < □ > < □ > < □ > < □ >