Geometric structures, Gromov norm and Kodaira dimensions

Weiyi Zhang

University of Warwick

Lanzhou University zoom talk, February 14, 2025

- 1 Kodaira dimensions
 - Holomorphic Kodaira dimension
 - Symplectic Kodaira dimension
 - Compatibility: additivity
- 2 Kodaira dimension for 3-manifolds
 - Geometric structures
 - Kodaira dimension for 3-manifolds
 - Gromov norm
- 3 Kodaira dimension for higher dimensional manifolds
 - Kodaira dimension for geometric 4-manifolds
 - Einstein 4-manifolds
 - Kodaira dimension for geometric manifolds
 - Complex/symplectic manifolds with nonzero Gromov norm
- 4 Kodaira dimension for almost complex manifolds (Chen-Z.)
 - Definitions
 - Properties

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Compact Riemann surfaces

	S^2	T^2	$\Sigma_{g \ge 2}$
Euler number	> 0	0	< 0
Curvature	> 0	0	< 0
Geometry	Spherical	Euclidean	Hyperbolic
Canonical bundle	not effective	trivial	ample
dim $H^0(\mathcal{K}^{\otimes l})$	0, 1 > 0	1, / ≥ 0	$(2l-1)(g-1), l \ge 2$
Kodaira dimension	$-\infty$	0	1

Canonical bundle $\mathcal{K} = T^* \Sigma$.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Compact Riemann surfaces

	S^2	T^2	$\Sigma_{g \ge 2}$
Euler number	> 0	0	< 0
Curvature	> 0	0	< 0
Geometry	Spherical	Euclidean	Hyperbolic
Canonical bundle	not effective	trivial	ample
dim $H^0(\mathcal{K}^{\otimes l})$	0, 1 > 0	1, / ≥ 0	$(2l-1)(g-1), l \ge 2$
Kodaira dimension	$-\infty$	0	1

Canonical bundle $\mathcal{K} = T^* \Sigma$.

In this talk, all manifolds are closed, smooth and oriented.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Kodaira dimension of complex manifolds

Given an *m*-dimensional complex manifold (M, J), we study the canonical bundle $\mathcal{K}_J = \wedge^m T^* M$ of holomorphic *m*-forms.

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Kodaira dimension of complex manifolds

Given an *m*-dimensional complex manifold (M, J), we study the canonical bundle $\mathcal{K}_J = \wedge^m T^* M$ of holomorphic *m*-forms.

For any l > 0, we have a rational map of M into complex projective space by

$$[s_0, \cdots, s_N]: M \to \mathbb{CP}^N$$

where $s_0, \dots, s_N \in H^0(\mathcal{K}_J^{\otimes l})$ is a basis of the global sections of $\mathcal{K}_J^{\otimes l}$.

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Kodaira dimension of complex manifolds

Given an *m*-dimensional complex manifold (M, J), we study the canonical bundle $\mathcal{K}_J = \wedge^m T^* M$ of holomorphic *m*-forms.

For any l > 0, we have a rational map of M into complex projective space by

$$[s_0, \cdots, s_N]: M \to \mathbb{CP}^N$$

where $s_0, \dots, s_N \in H^0(\mathcal{K}_J^{\otimes l})$ is a basis of the global sections of $\mathcal{K}_J^{\otimes l}$.

The Kodaira dimension is the supremum, as $l \to \infty$, of the (complex) dimension of the image of M under these maps. It takes values in $\{-\infty, 0, \dots, m\}$.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Equivalent formal definition

Definition

Suppose (M, J) is a complex manifold of real dimension 2m. The holomorphic Kodaira dimension $\kappa^h(M, J)$ is defined as follows:

$$\kappa^{h}(M,J) = \begin{cases} -\infty & \text{if dim } H^{0}(\mathcal{K}_{J}^{\otimes l}) = 0 \text{ for all } l \ge 1, \\ 0 & \text{if dim } H^{0}(\mathcal{K}_{J}^{\otimes l}) \in \{0,1\}, \text{ but } \notin 0 \text{ for all } l \ge 1, \\ k & \text{if dim } H^{0}(\mathcal{K}_{J}^{\otimes l}) \sim cl^{k}; \ c > 0. \end{cases}$$

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Properties

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

• κ^h is a birational invariant. In other words, two varieties have the same κ^h if they are isomorphic outside lower-dimensional subvarieties.

But it relies on J in general.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Properties

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

 κ^h is a birational invariant. In other words, two varieties have the same κ^h if they are isomorphic outside lower-dimensional subvarieties.

But it relies on J in general.

• Friedman-Qin: If (X, J_1) and (X, J_2) are diffeomorphic complex surfaces, then $\kappa^h(X, J_1) = \kappa^h(X, J_2)$.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Properties

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

 κ^h is a birational invariant. In other words, two varieties have the same κ^h if they are isomorphic outside lower-dimensional subvarieties.

But it relies on J in general.

- Friedman-Qin: If (X, J_1) and (X, J_2) are diffeomorphic complex surfaces, then $\kappa^h(X, J_1) = \kappa^h(X, J_2)$.
- In higher dimensions, there are examples $\kappa^h(X, J_1) \neq \kappa^h(X, J_2)$. For instance, take $(X, J_1) = (M^4 \times \sum_{g \ge 2}, J_M \times j)$ and $(X, J_2) = ((M_0 = \mathbb{C}P^2 \# 8 \overline{\mathbb{C}P^2}) \times \sum_{g \ge 2}, J_{M_0} \times j)$, where M^4 is the Barlow surface, an algebraic surface of general type homeomorphic but not diffeomorphic to M_0 . Then $\kappa^h(X, J_1) = 3$ and $\kappa^h(X, J_2) = -\infty$.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Complex projective surfaces

 $\kappa^h = -\infty$: rational surfaces (birational to complex projective plane \mathbb{CP}^2) and ruled surfaces (birational to $\Sigma_g \times S^2$);

Kodaira dimensions Kodaira dimension for 3-manifolds

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Complex projective surfaces

 $\kappa^{h} = -\infty$: rational surfaces (birational to complex projective plane \mathbb{CP}^{2}) and ruled surfaces (birational to $\Sigma_{g} \times S^{2}$);

 $\kappa^h = 0$: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety (topologically, the latter two are T^2 bundles over T^2), and their blow-ups (*i.e.* replacing a point with an $S^2 = \mathbb{CP}^1$ which parametrizes the complex lines of its tangent plane);

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Complex projective surfaces

 $\kappa^{h} = -\infty$: rational surfaces (birational to complex projective plane \mathbb{CP}^{2}) and ruled surfaces (birational to $\Sigma_{g} \times S^{2}$);

 $\kappa^h = 0$: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety (topologically, the latter two are T^2 bundles over T^2), and their blow-ups (*i.e.* replacing a point with an $S^2 = \mathbb{CP}^1$ which parametrizes the complex lines of its tangent plane);

 $\kappa^{h} = 1$: Elliptic surfaces, and their blow-ups;

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Complex projective surfaces

 $\kappa^{h} = -\infty$: rational surfaces (birational to complex projective plane \mathbb{CP}^{2}) and ruled surfaces (birational to $\Sigma_{g} \times S^{2}$);

 $\kappa^{h} = 0$: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety (topologically, the latter two are T^{2} bundles over T^{2}), and their blow-ups (*i.e.* replacing a point with an $S^{2} = \mathbb{CP}^{1}$ which parametrizes the complex lines of its tangent plane);

 $\kappa^{h} = 1$: Elliptic surfaces, and their blow-ups;

 κ^{h} = 2: surfaces of general type.

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Complex projective surfaces

 $\kappa^{h} = -\infty$: rational surfaces (birational to complex projective plane \mathbb{CP}^{2}) and ruled surfaces (birational to $\Sigma_{g} \times S^{2}$);

 $\kappa^{h} = 0$: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety (topologically, the latter two are T^{2} bundles over T^{2}), and their blow-ups (*i.e.* replacing a point with an $S^{2} = \mathbb{CP}^{1}$ which parametrizes the complex lines of its tangent plane);

 $\kappa^{h} = 1$: Elliptic surfaces, and their blow-ups;

 κ^{h} = 2: surfaces of general type.

Geometric reason:

For rational curves S with $S \cdot S \ge -1$, $\mathcal{K}_J|_S$ doesn't admit sections. For elliptic curves T with $T \cdot T = 0$, $\mathcal{K}_J|_T$ is trivial.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Symplectic Kodaira dimension for 4-manifolds

Definition (Li, LeBrun, McDuff-Salamon)

For a minimal (*i.e.* no -1 smooth spheres) symplectic 4-manifold (M^4, ω) with symplectic canonical class $K_{\omega} = c_1(T^*M)$, the Kodaira dimension of (M^4, ω) is defined in the following way:

$$\kappa^{s}(M^{4},\omega) = \begin{cases} -\infty & \text{if } K_{\omega} \cdot [\omega] < 0 \text{ or } K_{\omega} \cdot K_{\omega} < 0, \\ 0 & \text{if } K_{\omega} \cdot [\omega] = 0 \text{ and } K_{\omega} \cdot K_{\omega} = 0, \\ 1 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } K_{\omega} \cdot K_{\omega} = 0, \\ 2 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } K_{\omega} \cdot K_{\omega} > 0. \end{cases}$$

The Kodaira dimension of a non-minimal manifold is defined to be that of any of its minimal models.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

Properties of Symplectic Kodaira dimension

• K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

- K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.
- κ^s is well defined: no K_ω · [ω] = 0, K_ω² > 0; more than one minimal models.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

- K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.
- κ^s is well defined: no K_ω · [ω] = 0, K_ω² > 0; more than one minimal models.
- κ^{s} is a smooth invariant. (Taubes)

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

- K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.
- κ^s is well defined: no K_ω · [ω] = 0, K_ω² > 0; more than one minimal models.
- κ^s is a smooth invariant. (Taubes)
- When M^4 admits both complex and symplectic structures, $\kappa^h = \kappa^s$. (Dorfmeister-Z.)

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

- K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.
- κ^s is well defined: no K_ω · [ω] = 0, K_ω² > 0; more than one minimal models.
- κ^{s} is a smooth invariant. (Taubes)
- When M^4 admits both complex and symplectic structures, $\kappa^h = \kappa^s$. (Dorfmeister-Z.)
- If $\kappa^{s}(M) = -\infty$, then M is rational or ruled. (A.-K. Liu)

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.) Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

- K_{ω} is well defined: the space of almost complex structures tamed by ω is contractible.
- κ^s is well defined: no K_ω · [ω] = 0, K_ω² > 0; more than one minimal models.
- κ^{s} is a smooth invariant. (Taubes)
- When M^4 admits both complex and symplectic structures, $\kappa^h = \kappa^s$. (Dorfmeister-Z.)
- If $\kappa^{s}(M) = -\infty$, then M is rational or ruled. (A.-K. Liu)
- For minimal M, κ^s(M) = 0 ⇔ K_ω is torsion. And M has the same Q-homology as a K3, Enriques, or T² bundle over T². (Li)

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Additivity

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

We can also define Kodaira dimension for 0D and 1D. 0D: points, Kod = 0; 1D: circles, Kod = 0.

Philosophy: Given some "fibration/pencil" $f: M \rightarrow N$, then

Kod(M) = Kod(N) + Kod(fiber).

The Kodaira dimensions might be a relative one.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Examples

Holomorphic Kodaira dimension Symplectic Kodaira dimension Compatibility: additivity

• Covering. If $f: M \to N$ is a finite unramified covering, Then $\kappa^h(M) = \kappa^h(N)$ (Ueno), $\kappa^s(M) = \kappa^s(N)$ (Li-Z.).

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Examples

- Covering. If $f: M \to N$ is a finite unramified covering, Then $\kappa^h(M) = \kappa^h(N)$ (Ueno), $\kappa^s(M) = \kappa^s(N)$ (Li-Z.).
- Fiber bundle. When M is a Σ_g bundle over Σ_h , the additivity holds.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Examples

- Covering. If $f: M \to N$ is a finite unramified covering, Then $\kappa^h(M) = \kappa^h(N)$ (Ueno), $\kappa^s(M) = \kappa^s(N)$ (Li-Z.).
- Fiber bundle. When M is a Σ_g bundle over Σ_h , the additivity holds.
- Lefschetz fibrations. Use the relative version (Li-Z.).

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Examples

- Covering. If $f: M \to N$ is a finite unramified covering, Then $\kappa^h(M) = \kappa^h(N)$ (Ueno), $\kappa^s(M) = \kappa^s(N)$ (Li-Z.).
- Fiber bundle. When M is a Σ_g bundle over Σ_h , the additivity holds.
- Lefschetz fibrations. Use the relative version (Li-Z.).
- Maps with non-zero degree. If $f : M \to N$ is a map of non-zero degree, we should expect $Kod(M) \ge Kod(N)$, *i.e.*, compatible with Gromov's order.

Kodaira dimension for 3-manifolds Kodaira dimension for higher dimensional manifolds Kodaira dimension for almost complex manifolds (Chen-Z.)

Examples

- Covering. If $f: M \to N$ is a finite unramified covering, Then $\kappa^h(M) = \kappa^h(N)$ (Ueno), $\kappa^s(M) = \kappa^s(N)$ (Li-Z.).
- Fiber bundle. When M is a Σ_g bundle over Σ_h , the additivity holds.
- Lefschetz fibrations. Use the relative version (Li-Z.).
- Maps with non-zero degree. If f : M → N is a map of non-zero degree, we should expect Kod(M) ≥ Kod(N), i.e., compatible with Gromov's order.
- Do we have Kod(M³ × S¹) = Kod₃(M³) + Kod(S¹) = Kod₃(M³)? Need a proper definition of Kod₃(M³) first.

Geometric structures

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Look at the table for dimension 2, the most plausible one to define $Kod_3(M^3)$ is to use the geometric structures *a la* Thurston.

Geometric structures

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Look at the table for dimension 2, the most plausible one to define $Kod_3(M^3)$ is to use the geometric structures *a la* Thurston.

This is a modern incarnation of Klein's Erlangen Program.

Geometric structures

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Look at the table for dimension 2, the most plausible one to define $Kod_3(M^3)$ is to use the geometric structures *a la* Thurston.

This is a modern incarnation of Klein's Erlangen Program.

A *geometric structure* on a manifold M is a diffeomorphism from M to X/Γ for some model geometry (X, G), where Γ is a discrete subgroup of G acting freely on X.

Model geometry

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

- X simply connected smooth manifold;
- Lie group G acts on X transitively and effectively with compact point stabilizers;
- *G* is maximal among such groups;
- There is at least one M diffeomorphic to X/Γ with finite volume, where Γ is a discrete subgroup of G acting freely on X.

First two conditions guarantee left *G*-invariant Riemannian metric on *X*. The third implies G = Isom(X).

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Geometric structures in dimension 3

The fourth condition above implies there are finitely many geometric structures. In fact, in dimension 3, there are 8 geometries. We divide them into 4 classes, called "*cat*".

$$\begin{array}{rl} -\infty : & S^3 \text{ and } S^2 \times \mathbb{E}; \\ 0 : & \mathbb{E}^3, \text{ Nil and Sol}; \\ 1 : & \mathbb{H}^2 \times \mathbb{E}, \text{ } \widehat{SL_2(\mathbb{R})}; \\ \frac{3}{2} : & \mathbb{H}^3. \end{array}$$

Examples

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Example of *Nil*: quotient of Heisenberg group by the "integral Heisenberg group".

Example of *Sol*: mapping torus of an Anosov map of the 2-torus, *e.g.* the automorphism given by $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Examples of $SL_2(\mathbb{R})$: unit tangent bundle of $\Sigma_{g\geq 2}$; Brieskorn homology spheres $\{x^p + y^q + z^r = 0\} \cap S^5$, $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$.

Geometrization

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

To define the Kodaira dimension for a general 3-manifold, we need to use Thurston's geometrization.

Theorem (Kneser-Milnor)

Every compact, orientable 3-manifold can be decomposed into the connected sum of a unique (finite) collection of prime 3-manifolds.

Geometrization

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

To define the Kodaira dimension for a general 3-manifold, we need to use Thurston's geometrization.

Theorem (Kneser-Milnor)

Every compact, orientable 3-manifold can be decomposed into the connected sum of a unique (finite) collection of prime 3-manifolds.

Theorem (Perelman, Hamilton)

Every oriented prime closed 3-manifold can be cut along tori, so that the interior of each of the resulting manifolds has a geometric structure with finite volume.

So start with any closed 3-manifold, we can decompose along spheres and tori such that each resulting piece is geometric.

Definition of $\kappa^t(M^3)$

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Definition (and Proposition)

 $\kappa^{t}(M^{3}) = \max_{i} \{ cat(M_{i}) \mid M_{i} \text{ are geometric pieces} \}$ is well defined.

We have to show the well definedness since the decomposition might not be unique.

Definition of $\kappa^t(M^3)$

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Definition (and Proposition)

 $\kappa^{t}(M^{3}) = \max_{i} \{ cat(M_{i}) \mid M_{i} \text{ are geometric pieces} \}$ is well defined.

We have to show the well definedness since the decomposition might not be unique. The key is

Theorem (Thurston)

Non-closed 3-dimensional geometric manifolds with finite volume exist only for geometries in category 1 or $\frac{3}{2}$, i.e. \mathbb{H}^3 , $\mathbb{H}^2 \times \mathbb{E}$ and $\widetilde{SL_2(\mathbb{R})}$.

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Definition of Kod₃ and virtual Betti number

We define

 $Kod_3(M^3) := [\kappa^t(M^3)].$

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Definition of Kod₃ and virtual Betti number

We define

$$Kod_3(M^3) \coloneqq [\kappa^t(M^3)].$$

We define the virtual Betti number

 $vb_1(M) \coloneqq \sup\{b_1(\tilde{M}) \mid \tilde{M} \text{ is a finite covering of } M\}.$

Then for irreducible 3-manifolds, there is a numerical characterization of $\kappa^t(M^3)$:

$$Kod_3(M^3) = \begin{cases} -\infty & \text{when } vb_1 = 0, \\ 0 & \text{when } vb_1 \text{ is finite and positive,} \\ 1 & \text{when } vb_1 \text{ is infinite.} \end{cases}$$

Compatiblity

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

- When $M^3 \times S^1$ is complex/symplectic, M is a Σ_g bundle over S^1 (Friedl-Vidussi, Etgü). Then it is easy to check $Kod_3(M^3) = [\kappa^t(M^3)] = Kod(M^3 \times S^1)$.
- It is also compatible with 2-d, 1-d Kodaira dimension in the sense of additivity.
- It is invariant under unramified covering.

Compatiblity

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

- When $M^3 \times S^1$ is complex/symplectic, M is a Σ_g bundle over S^1 (Friedl-Vidussi, Etgü). Then it is easy to check $Kod_3(M^3) = [\kappa^t(M^3)] = Kod(M^3 \times S^1).$
- It is also compatible with 2-d, 1-d Kodaira dimension in the sense of additivity.
- It is invariant under unramified covering.

Furthermore, we have

Theorem

If $f: M^3 \longrightarrow N^3$ is a non-zero degree map, then $\kappa^t(M) \ge \kappa^t(N)$.

One key point: geometric manifolds are determined by their fundamental groups.

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

Definition of Gromov norm

To show \mathbb{H}^3 is the largest, we use Gromov norm. Let $|\cdot|_1 : C_k(M; \mathbb{R}) \to \mathbb{R}$ be the l^1 norm on real singular chains: for $z = \sum c_i \sigma_i \in C_k(M; \mathbb{R})$,

$$|z|_1 \coloneqq \sum |c_i|.$$

Then the Gromov norm is

$$||M|| := \inf\{|z|_1 \mid [z] = [M]\} \in \mathbb{R}_{\geq 0}.$$

Basic properties

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

• By definition, $||M|| \ge \deg(f)||N||$, if $f : M^n \to N^n$. So S^2 , T^2 have ||M|| = 0, since they have self-map of degree ≥ 2 .

Basic properties

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

- By definition, $||M|| \ge \deg(f)||N||$, if $f : M^n \to N^n$. So S^2 , T^2 have ||M|| = 0, since they have self-map of degree ≥ 2 .
- For hyperbolic manifold M^n , $||M|| = \frac{Vol(M)}{v_n} > 0$, where $v_n = Vol(\text{regular ideal simplex})$, e.g. $v_2 = \pi$.

Basic properties

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

- By definition, $||M|| \ge \deg(f)||N||$, if $f : M^n \to N^n$. So S^2 , T^2 have ||M|| = 0, since they have self-map of degree ≥ 2 .
- For hyperbolic manifold M^n , $||M|| = \frac{Vol(M)}{v_n} > 0$, where $v_n = Vol($ (regular ideal simplex), *e.g.* $v_2 = \pi$.
- Gluing. The Gromov norm is additive when gluing along spheres or tori.

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

More vanishing results

- If M admits an S^1 action.
- If the fundamental group is amenable (*e.g.* nilpotent, solvable, abelian, finite, …).

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

More vanishing results

- If *M* admits an *S*¹ action.
- If the fundamental group is amenable (*e.g.* nilpotent, solvable, abelian, finite, …).

These two properties imply that 7 geometries with $cat \leq 1$ have vanishing Gromov norm.

 \Rightarrow A 3-manifold has vanishing Gromov norm if and only if it is a graph manifold.

Geometric structures Kodaira dimension for 3-manifolds Gromov norm

More vanishing results

- If M admits an S^1 action.
- If the fundamental group is amenable (*e.g.* nilpotent, solvable, abelian, finite, …).

These two properties imply that 7 geometries with $cat \leq 1$ have vanishing Gromov norm.

 \Rightarrow A 3-manifold has vanishing Gromov norm if and only if it is a graph manifold.

All the above imply

Lemma

If
$$f: M^3 \to N^3$$
 with deg $f \neq 0$, then $\kappa^t(N) = 1.5$ implies $\kappa^t(M) = 1.5$.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

19 geometries in dimension 4

The classification of geometric structures in dimension 4 due to Filipkiewicz (Warwick thesis)

$$\begin{array}{rcl} -\infty: & \mathbb{P}^{2}(\mathbb{C}), \ S^{4}, \ S^{3} \times \mathbb{E}, \ S^{2} \times S^{2}, \ S^{2} \times \mathbb{E}^{2}, \ S^{2} \times \mathbb{H}^{2}, \ Sol_{0}^{4} \ \text{and} \ Sol_{1}^{4}; \\ 0: & \mathbb{E}^{4}, \ Nil^{4}, \ Nil^{3} \times \mathbb{E} \ \text{and} \ Sol_{m,n}^{4}(\text{including} \ Sol^{3} \times \mathbb{E}); \\ 1: & \mathbb{H}^{2} \times \mathbb{E}^{2}, \ \widetilde{SL_{2}} \times \mathbb{E}, \ \text{and} \ F^{4}; \\ \frac{3}{2}: & \mathbb{H}^{3} \times \mathbb{E}; \\ 2: & \mathbb{H}^{2}(\mathbb{C}), \ \mathbb{H}^{2} \times \mathbb{H}^{2} \ \text{and} \ \mathbb{H}^{4}. \end{array}$$

Here F^4 admits no compact model.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

19 geometries in dimension 4

The classification of geometric structures in dimension 4 due to Filipkiewicz (Warwick thesis)

 $\begin{array}{rcl} -\infty: & \mathbb{P}^{2}(\mathbb{C}), \ S^{4}, \ S^{3} \times \mathbb{E}, \ S^{2} \times S^{2}, \ S^{2} \times \mathbb{E}^{2}, \ S^{2} \times \mathbb{H}^{2}, \ Sol_{0}^{4} \ \text{and} \ Sol_{1}^{4}; \\ 0: & \mathbb{E}^{4}, \ Nil^{4}, \ Nil^{3} \times \mathbb{E} \ \text{and} \ Sol_{m,n}^{4}(\text{including} \ Sol^{3} \times \mathbb{E}); \\ 1: & \mathbb{H}^{2} \times \mathbb{E}^{2}, \ \widetilde{SL_{2}} \times \mathbb{E}, \ \text{and} \ F^{4}; \\ \frac{3}{2}: & \mathbb{H}^{3} \times \mathbb{E}; \\ 2: & \mathbb{H}^{2}(\mathbb{C}), \ \mathbb{H}^{2} \times \mathbb{H}^{2} \ \text{and} \ \mathbb{H}^{4}. \end{array}$

Here F^4 admits no compact model.

Definition

Let M^4 be a 4-dimensional geometric manifold. The Kodaira dimension $\kappa^g(M)$ is defined to be the category number of M.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric manifolds of $[\kappa^g] = 1$

Theorem

A closed geometric 4-manifold with $[\kappa^g] = 1$ admits a foliation by geodesic circles.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric manifolds of $[\kappa^g] = 1$

Theorem

A closed geometric 4-manifold with $[\kappa^g] = 1$ admits a foliation by geodesic circles.

Wadsley (another Warwick thesis): A double cover of such a manifold admits a non trivial S^1 action. In particular, it has vanishing Gromov norm.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric manifolds of $[\kappa^g] = 1$

Theorem

A closed geometric 4-manifold with $[\kappa^g] = 1$ admits a foliation by geodesic circles.

Wadsley (another Warwick thesis): A double cover of such a manifold admits a non trivial S^1 action. In particular, it has vanishing Gromov norm.

A geometric manifold with $\kappa^g = -\infty$ or 0 has amenable fundamental group or admits a non trivial S^1 action. In particular, it has vanishing Gromov norm.

Geometric manifolds of $\kappa^g = 2$

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Corollary

A closed geometric 4-manifold has nonzero Gromov norm if and only if $\kappa^{g} = 2$.

Geometric manifolds of $\kappa^{g} = 2$

Corollary

A closed geometric 4-manifold has nonzero Gromov norm if and only if $\kappa^{g} = 2$.

The "if" part of the above corollary follows from

•
$$\mathbb{H}^4$$
: $||M|| = \frac{1}{v_4} Vol(M)$ (Gromov-Thurston)

• $\mathbb{H}^2 \times \mathbb{H}^2$: $||M|| = \frac{3}{2\pi^2} Vol(M)$. (Bucher-Karlsson)

 ■²(ℂ) = SU(2,1)/S(U(2) × U(1)) is a closed oriented locally symmetric space of non-compact type, then ||M|| > 0
 (Lafont-Schmidt).

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Mapping order of Geometric 4-manifolds

It is easy to see that κ^g is preserved under finite covering. Similar to the result for monotonicity of κ^t for 3-manifolds, we have

Theorem (Neofytidis)

If $f: M^4 \longrightarrow N^4$ is a map of non-zero degree between closed geometric 4-manifolds, then $\kappa^g(M) \ge \kappa^g(N)$.

Hitchin-Thorpe

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

As suggested by the solution of geometrization conjecture by Ricci flow, building blocks of 4-manifolds should consist of Einstein manifolds and collapsed pieces. Einstein 4-manifolds are far more complicated than Einstein 3-manifolds. However, we have the following Hitchin-Thorpe theorem.

Theorem (Hitchin-Thorpe)

Any compact oriented Einstein 4-manifold (M,g) satisfies $2\chi + 3\sigma \ge 0$. The equality holds if and only if (M,g) is finitely covered by a Calabi-Yau K3 surface or by a 4-torus.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

No symplectic/complex Einstein manifolds with Kod = 1

If there is an almost complex structure J, then $2\chi + 3\sigma = K^2$.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

No symplectic/complex Einstein manifolds with Kod = 1

If there is an almost complex structure J, then $2\chi + 3\sigma = K^2$.

For symplectic/complex 4-manifolds with Kod = 1, we have $K^2 \le 0$ since blow-up reduces K^2 . By Hitchin-Thorpe, such Einstein ones have $K^2 = 0$, which holds for Kod = 0.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

No symplectic/complex Einstein manifolds with Kod = 1

If there is an almost complex structure J, then $2\chi + 3\sigma = K^2$.

For symplectic/complex 4-manifolds with Kod = 1, we have $K^2 \le 0$ since blow-up reduces K^2 . By Hitchin-Thorpe, such Einstein ones have $K^2 = 0$, which holds for Kod = 0.

Hence there is no symplectic/complex Einstein manifolds with Kod = 1.

This suggests contributions from Kodaira dimension 1 are all from collapsed pieces. All from Model Geometries?

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric 5-manifolds (Neofytidis-Z.)

• Geng classifies 5-dimensional geometries. There exist 58 geometries, and 54 of them are realized by compact manifolds.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric 5-manifolds (Neofytidis-Z.)

- Geng classifies 5-dimensional geometries. There exist 58 geometries, and 54 of them are realized by compact manifolds.
- We can define κ^{g} for them. It takes values $-\infty, 0, 1, \frac{3}{2}, 2, \frac{5}{2}$.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric 5-manifolds (Neofytidis-Z.)

- Geng classifies 5-dimensional geometries. There exist 58 geometries, and 54 of them are realized by compact manifolds.
- We can define κ^{g} for them. It takes values $-\infty, 0, 1, \frac{3}{2}, 2, \frac{5}{2}$.
- It coincides with Gromov order. That is, if f : M⁴ → N⁴ is a map of non-zero degree between closed geometric 4-manifolds, then κ^g(M) ≥ κ^g(N).

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Geometric 5-manifolds (Neofytidis-Z.)

- Geng classifies 5-dimensional geometries. There exist 58 geometries, and 54 of them are realized by compact manifolds.
- We can define κ^{g} for them. It takes values $-\infty, 0, 1, \frac{3}{2}, 2, \frac{5}{2}$.
- It coincides with Gromov order. That is, if f : M⁴ → N⁴ is a map of non-zero degree between closed geometric 4-manifolds, then κ^g(M) ≥ κ^g(N).
- A closed geometric 5-manifold has nonzero Gromov norm if and only if κ^g = ⁵/₂, *i.e.*, when M is modeled on ^{Π5}, SL(3, ℝ)/SO(3) or ℍ³ × ℍ².

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Higher dimensional geometric manifolds

A complete connected Riemannian manifold M is a *locally* symmetric space of non-compact type if it is diffeomorphic to $\Gamma \setminus G/K$ where G is a centerless semisimple Lie group, K is a maximal compact subgroup in G, and Γ is a discrete subgroup in G that acts freely on G/K via left action.

Theorem (P. H. How)

Let M be a geometric manifold. Then ||M|| > 0 if and only if M is a locally symmetric space of non-compact type.

We can merely assume M is a closed topological manifold that admits a smooth structure with a locally homogeneous Riemannian metric.

Some questions

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

• Let *M* be a smooth 2*n*-dimensional complex manifold with nonvanishing Gromov norm. Is $\kappa^h(M) = n$?

Some questions

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

- Let *M* be a smooth 2*n*-dimensional complex manifold with nonvanishing Gromov norm. Is $\kappa^h(M) = n$?
- Let M be a smooth 4-dimensional symplectic manifold with nonvanishing Gromov norm. Is $\kappa^{s}(M) = 2$? This is true for Kähler surfaces.

Some questions

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

- Let *M* be a smooth 2*n*-dimensional complex manifold with nonvanishing Gromov norm. Is $\kappa^h(M) = n$?
- Let M be a smooth 4-dimensional symplectic manifold with nonvanishing Gromov norm. Is $\kappa^{s}(M) = 2$? This is true for Kähler surfaces.
- Suppose that (M_1, ω_1) and (M_2, ω_2) are symplectic 4-manifolds and almost complex structures J_i are tamed by ω_i . If f is a (J_1, J_2) -pseudo-holomorphic map (i.e. $f \circ J_1 = J_2 \circ f$ of non-zero degree from (M_1, ω_1) to (M_2, ω_2) , is $\kappa^s(M_1, \omega_1) \ge \kappa^s(M_2, \omega_2)$? Note: If there is a holomorphic map of non-zero degree from (M_1, J_1) to (M_2, J_2) , then $\kappa^h(M_1, J_1) \ge \kappa^h(M_2, J_2)$.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Answer to Question 1: Kähler 3-folds

We have a satisfactory answer to above Question 1: Let M be a smooth 2n-dimensional complex manifold with nonvanishing Gromov norm. Is $\kappa^h(M) = n$?

Theorem (Neofytidis-Z.)

If X is a smooth Kähler 3-fold with non-vanishing Gromov norm, then $\kappa^h(X) = 3$.

We can reduce it to projective manifolds, since for any compact Kähler manifold X of complex dimension three, there exists a bimeromorphic Kähler manifold X' which is deformation equivalent to a projective manifold.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Answer to Question 1: Projective manifolds

It is based on the following facts

- Gromov norm is a birational invariant. That is, birationally equivalent smooth projective varieties (resp. bimeromorphic smooth Kähler manifolds) have the same Gromov norm.
- Any uniruled manifold has vanishing Gromov norm.

and two conjectures, proved in dimension \leq 3:

Conjecture

- (Mumford) A smooth projective variety with $\kappa^h = -\infty$ is uniruled.
- **2** (Kollár) Let X be a smooth projective variety with $\kappa^h(X) = 0$. Then $\pi_1(X)$ has a finite index Abelian subgroup.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Answer to Question 1: Projective manifolds (cont.)

Theorem (Neofytidis-Z.)

- Up to Kollár's Conjecture, any smooth 2n-dimensional complex projective variety M with κ^h(M) ≥ 0 and ||M|| > 0 has κ^h(M) = n.
- Further assuming Mumford's Conjecture, any smooth projective variety with non-vanishing Gromov norm is of general type.

Corollary

Let M be a smooth complex projective n-fold with non-vanishing simplicial volume. Then $\kappa^h(M)$ cannot be n - 1, n - 2 or n - 3. If, moreover, n = 3, then $\kappa^h(M) = 3$.

Kodaira dimension for geometric 4-manifolds Einstein 4-manifolds Kodaira dimension for geometric manifolds Complex/symplectic manifolds with nonzero Gromov norm

Yamabe invariant

$$Y(M) = \sup_{[\hat{g}] \in \mathcal{C}} \inf_{g \in [\hat{g}]} \int_{M} s_{g} dV_{g},$$

where g is a Riemannian metric on M, s_g is the scalar curvature of g, and C is the set of conformal classes on M.

Question (LeBrun)

If M^4 admits a symplectic structure and $Y(M^4) < 0$, is $\kappa^s(M^4) = 2$?

- For minimal M^4 , $\kappa^s(M^4) = 2$ would imply $Y(M^4) < 0$.
- It is true for Kähler surfaces.
- F-structure $\Rightarrow Y(M^4) \ge 0$. Y(M) > 0 if and only if M has positive scalar curvature.

Definitions Properties

Pluricanonical genus

We can generalize the two (equivalent) definitions of complex Kodaira dimension to almost complex manifolds.

We still have $\mathcal{K} = \Lambda^{n,0}$, but it is no longer holomorphic. However, we have $\bar{\partial} : \mathcal{K} \to \Lambda^{n,1} \cong T^{0,1} \otimes \mathcal{K}$. and it can be extended to an operator $\bar{\partial}_m : \mathcal{K}^{\otimes m} \to T^{0,1} \otimes \mathcal{K}^{\otimes m}$ for $m \ge 2$ inductively by Leibniz rule.

We still have the pluricanonical genus

$$P_m(X,J) = H^0(X,\mathcal{K}^{\otimes m}) = \{s \in \Gamma(X,\mathcal{K}^{\otimes m}) : \overline{\partial}_m s = 0\}.$$

Proposition

 $H^0(X, \mathcal{K}^{\otimes m})$ is finite dimensional.

Definitions Properties

Kodaira dimension $\kappa^{J}(X)$

Definition

The Kodaira dimension $\kappa^{J}(X)$ of (X, J) is defined as:

$$\kappa^{J}(X) = \begin{cases} -\infty, \text{ if } P_{m} = 0 \text{ for any } m \ge 0\\ \limsup_{m \to \infty} \frac{\log P_{m}}{\log m}, \text{ otherwise.} \end{cases}$$

Definitions Properties

Kodaira dimension $\kappa_J(X)$

We can still define the pluricanonical map by

$$\Phi_m(x) = [s_0(x) : \cdots : s_N(x)],$$

where s_i are a basis of $H^0(X, \mathcal{K}^{\otimes m})$.

Theorem

 Φ_m is a pseudoholomorphic map and the image is a projective subvariety of $\mathbb{C}P^N$.

Definitions Properties

Kodaira dimension $\kappa_J(X)$

We can still define the pluricanonical map by

$$\Phi_m(x) = [s_0(x) : \cdots : s_N(x)],$$

where s_i are a basis of $H^0(X, \mathcal{K}^{\otimes m})$.

Theorem

 Φ_m is a pseudoholomorphic map and the image is a projective subvariety of $\mathbb{C}P^N$.

Definition

The Kodaira dimension $\kappa_J(X)$ of (X, J) is defined as:

$$\kappa_J(X) = \begin{cases} -\infty, \text{ if } P_m = 0 \text{ for any } m \ge 0 \\ \max \dim \Phi_m, \text{ otherwise.} \end{cases}$$

Properties

Definitions Properties

We only summarize the results for almost complex 4-manifolds.

• $\kappa_J = \kappa^J$. When J is integrable, they are equal to κ^h .

Properties

Definitions Properties

- $\kappa_J = \kappa^J$. When J is integrable, they are equal to κ^h .
- κ^J is a birational invariant, *i.e.* if $u: (X, J) \rightarrow (Y, J_Y)$ is a degree 1 pseudoholomorphic map. Then $\kappa^J(X) = \kappa^{J_Y}(Y)$.

Properties

Definitions Properties

- $\kappa_J = \kappa^J$. When J is integrable, they are equal to κ^h .
- κ^J is a birational invariant, *i.e.* if $u: (X, J) \rightarrow (Y, J_Y)$ is a degree 1 pseudoholomorphic map. Then $\kappa^J(X) = \kappa^{J_Y}(Y)$.
- κ^J is not a deformation invariant, hence not a smooth invariant.

Properties

Definitions Properties

- $\kappa_J = \kappa^J$. When J is integrable, they are equal to κ^h .
- κ^J is a birational invariant, *i.e.* if $u: (X, J) \rightarrow (Y, J_Y)$ is a degree 1 pseudoholomorphic map. Then $\kappa^J(X) = \kappa^{J_Y}(Y)$.
- κ^J is not a deformation invariant, hence not a smooth invariant.
- $\kappa^J = -\infty$ or 0, if J is not integrable.

Definitions Properties

Properties

- $\kappa_J = \kappa^J$. When J is integrable, they are equal to κ^h .
- κ^J is a birational invariant, *i.e.* if $u: (X, J) \rightarrow (Y, J_Y)$ is a degree 1 pseudoholomorphic map. Then $\kappa^J(X) = \kappa^{J_Y}(Y)$.
- κ^J is not a deformation invariant, hence not a smooth invariant.
- $\kappa^J = -\infty$ or 0, if J is not integrable.
- We have similar generalizations of litaka dimension.

Definitions Properties

Thanks very much for your attention !