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@ Kodaira dimensions
@ Holomorphic Kodaira dimension
@ Symplectic Kodaira dimension
@ Compatibility: additivity
© Kodaira dimension for 3-manifolds
@ Geometric structures
@ Kodaira dimension for 3-manifolds
@ Gromov norm
© Kodaira dimension for higher dimensional manifolds
@ Kodaira dimension for geometric 4-manifolds
@ Einstein 4-manifolds
@ Kodaira dimension for geometric manifolds
@ Complex/symplectic manifolds with nonzero Gromov norm
@ Kodaira dimension for almost complex manifolds (Chen-Z.)
@ Definitions
@ Properties
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Compact Riemann surfaces

s? T2 Ygso
Euler number >0 0 <0
Curvature >0 0 <0
Geometry Spherical Euclidean Hyperbolic
Canonical bundle | not effective trivial ample
dim HO(KC®) 0,/>0 1,120 | (2/-1)(g-1),/>2
Kodaira dimension —00 0 1

Canonical bundle = T*X.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Compact Riemann surfaces

s? T2 Ygso
Euler number >0 0 <0
Curvature >0 0 <0
Geometry Spherical Euclidean Hyperbolic
Canonical bundle | not effective trivial ample
dim HO(KC®) 0,/>0 1,120 | (2/-1)(g-1),/>2
Kodaira dimension —00 0 1

Canonical bundle = T*X.

In this talk, all manifolds are closed, smooth and oriented.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: ad ity

Kodaira dimension of complex manifolds

Given an m-dimensional complex manifold (M, J), we study the
canonical bundle I; = A T*M of holomorphic m-forms.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Kodaira dimension of complex manifolds

Given an m-dimensional complex manifold (M, J), we study the
canonical bundle I; = A T*M of holomorphic m-forms.

For any /> 0, we have a rational map of M into complex projective

space by
[50, "',SN] M- C]P’N

where sq,---, s € HO(IC?/) is a basis of the global sections of IC:‘;”.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Kodaira dimension of complex manifolds

Given an m-dimensional complex manifold (M, J), we study the
canonical bundle I; = A T*M of holomorphic m-forms.

For any /> 0, we have a rational map of M into complex projective
space by
[So, "',SN] M- C]P’N

where sq,---, s € HO(IC?/) is a basis of the global sections of IC:‘;”.
The Kodaira dimension is the supremum, as /| — oo, of the

(complex) dimension of the image of M under these maps. It takes
values in {-00,0,---, m}.
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Kodaira dimensions

Holomorphic Kodaira dimension
Symplectic Kodaira dimension
Compatibility: additivity

Equivalent formal definition

Definition

Suppose (M, J) is a complex manifold of real dimension 2m. The
holomorphic Kodaira dimension (M, J) is defined as follows:

—oo if dim HO(K8') =0 for all /> 1,

K'(M,J)=1 0 ifdim H°(K%') € {0,1}, but #0 for all /> 1,
k if dim HO(K9') ~ cI%; ¢ > 0.

Weiyi Zhang
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension
Symplectic Kodaira dimension
Compatibility: additivity

Properties

e " is a birational invariant. In other words, two varieties have
the same /" if they are isomorphic outside lower-dimensional
subvarieties.

But it relies on J in general.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: ad i

Properties

e " is a birational invariant. In other words, two varieties have

the same /" if they are isomorphic outside lower-dimensional
subvarieties.
But it relies on J in general.

e Friedman-Qin: If (X, J1) and (X, J2) are diffeomorphic
complex surfaces, then (X, J;) = "(X, J).
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Properties

e " is a birational invariant. In other words, two varieties have

the same /" if they are isomorphic outside lower-dimensional
subvarieties.
But it relies on J in general.

e Friedman-Qin: If (X, J1) and (X, J2) are diffeomorphic
complex surfaces, then (X, J;) = "(X, J).

@ In higher dimensions, there are examples
k(X 1) # K"(X, J). For instance, take
(X, h) = (M*x L0, Iy % j) and
(X, 2) = (Mo = CP?#8CP2) x T g5, In, x j), where M* is
the Barlow surface, an algebraic surface of general type

homeomorphic but not diffeomorphic to M.
Then x"(X, 1) =3 and &(X, J) = —oco.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: ad i

Complex projective surfaces

Kkl = —oco: rational surfaces (birational to complex projective plane

CP?) and ruled surfaces (birational to ¥, x S2);

Weiyi Zhang Geometric structures and Kodaira dimension



Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Complex projective surfaces

Kkl = —oco: rational surfaces (birational to complex projective plane

CP?) and ruled surfaces (birational to ¥, x S2);

k" =0: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety
(topologically, the latter two are T2 bundles over T2), and their
blow-ups (i.e. replacing a point with an 52 = CPP* which
parametrizes the complex lines of its tangent plane);
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Complex projective surfaces

Kkl = —oco: rational surfaces (birational to complex projective plane

CP?) and ruled surfaces (birational to ¥, x S2);

k" =0: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety
(topologically, the latter two are T2 bundles over T2), and their
blow-ups (i.e. replacing a point with an 52 = CPP* which
parametrizes the complex lines of its tangent plane);

/" = 1: Elliptic surfaces, and their blow-ups;
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
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Complex projective surfaces

Kkl = —oco: rational surfaces (birational to complex projective plane

CP?) and ruled surfaces (birational to ¥, x S2);

k" =0: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety
(topologically, the latter two are T2 bundles over T2), and their
blow-ups (i.e. replacing a point with an 52 = CPP* which
parametrizes the complex lines of its tangent plane);

/" = 1: Elliptic surfaces, and their blow-ups;

/= 2: surfaces of general type.
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Kodaira dimensions g q g q
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Complex projective surfaces

Kkl = —oco: rational surfaces (birational to complex projective plane

CP?) and ruled surfaces (birational to ¥, x S2);

k" =0: K3, Enrique surfaces, hyperelliptic surfaces, abelian variety
(topologically, the latter two are T2 bundles over T2), and their
blow-ups (i.e. replacing a point with an 52 = CPP* which
parametrizes the complex lines of its tangent plane);

/" = 1: Elliptic surfaces, and their blow-ups;
/= 2: surfaces of general type.

Geometric reason:
For rational curves S with S-S > -1, K |s doesn't admit sections.
For elliptic curves T with T-T =0, K |7 is trivial.

Weiyi Zhang Geometric structures and Kodaira dimension



Kodaira dimensions o A . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Symplectic Kodaira dimension for 4-manifolds

Definition (Li, LeBrun, McDuff-Salamon)

For a minimal (i.e. no =1 smooth spheres) symplectic 4-manifold
(M*,w) with symplectic canonical class K., = c;(T*M), the
Kodaira dimension of (M*,w) is defined in the following way:

—o0 if K, -[w]<0or K, -K,<0,
if Kp-[w]=0and K, -K,=0
[w]
[w]

I{S(M‘l?w): . ,
if K,-[w] >0and K,-K, =0,

2 if K, >0and K, -K,>0.

W

%

The Kodaira dimension of a non-minimal manifold is defined to be
that of any of its minimal models.
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.
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Kodaira dimensions o " . A
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Symplectic Kodaira dimension
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Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.

o «° is well defined: no K, - [w] =0, K2 > 0; more than one
minimal models.
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Symplectic Kodaira dimension
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Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.

o «° is well defined: no K, - [w] =0, K2 > 0; more than one
minimal models.

@ «° is a smooth invariant. (Taubes)
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
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Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.

o «° is well defined: no K, - [w] =0, K2 > 0; more than one
minimal models.

@ «° is a smooth invariant. (Taubes)

e When M* admits both complex and symplectic structures,
kh = k5. (Dorfmeister-Z.)
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.

o «° is well defined: no K, - [w] =0, K2 > 0; more than one

minimal models.
@ «° is a smooth invariant. (Taubes)

e When M* admits both complex and symplectic structures,
kh = k5. (Dorfmeister-Z.)
e If k(M) = —oco, then M is rational or ruled. (A.-K. Liu)
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Properties of Symplectic Kodaira dimension

@ K, is well defined: the space of almost complex structures
tamed by w is contractible.

o «° is well defined: no K, - [w] =0, K2 > 0; more than one

minimal models.

@ «° is a smooth invariant. (Taubes)

e When M* admits both complex and symplectic structures,
kh = k5. (Dorfmeister-Z.)

e If k(M) = —oco, then M is rational or ruled. (A.-K. Liu)

e For minimal M, k*(M) =0 < K, is torsion. And M has the
same Q-homology as a K3, Enriques, or T2 bundle over T2.

(L)
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

Additivity

We can also define Kodaira dimension for 0D and 1D.
0D: points, Kod = 0; 1D: circles, Kod = 0.

Philosophy: Given some “fibration/pencil” f : M — N, then
Kod(M) = Kod(N) + Kod(fiber).

The Kodaira dimensions might be a relative one.
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

SETNIES

e Covering. If f: M — N is a finite unramified covering, Then
kM(M) = kP(N) (Ueno), x5(M) = k5(N) (Li-Z.).
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SETNIES

e Covering. If f: M — N is a finite unramified covering, Then
kM(M) = kP(N) (Ueno), x5(M) = k5(N) (Li-Z.).

@ Fiber bundle. When M is a >, bundle over ¥, the additivity
holds.
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SETNIES

e Covering. If f: M — N is a finite unramified covering, Then
kM(M) = kP(N) (Ueno), x5(M) = k5(N) (Li-Z.).

@ Fiber bundle. When M is a >, bundle over ¥, the additivity
holds.

@ Lefschetz fibrations. Use the relative version (Li-Z.).
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

SETNIES

@ Covering. If f: M - N is a finite unramified covering, Then
kM(M) = kP(N) (Ueno), x5(M) = k5(N) (Li-Z.).

@ Fiber bundle. When M is a >, bundle over ¥, the additivity
holds.

@ Lefschetz fibrations. Use the relative version (Li-Z.).

@ Maps with non-zero degree. If f: M — N is a map of non-zero
degree, we should expect Kod(M) > Kod(N), i.e., compatible
with Gromov's order.
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Kodaira dimensions o " . A
Holomorphic Kodaira dimension

Symplectic Kodaira dimension
Compatibility: additivity

SETNIES

e Covering. If f: M — N is a finite unramified covering, Then
kM(M) = kP(N) (Ueno), x5(M) = k5(N) (Li-Z.).

@ Fiber bundle. When M is a >, bundle over ¥, the additivity
holds.

@ Lefschetz fibrations. Use the relative version (Li-Z.).
@ Maps with non-zero degree. If f: M — N is a map of non-zero

degree, we should expect Kod(M) > Kod(N), i.e., compatible
with Gromov's order.

@ Do we have
Kod (M3 x S1) = Kods(M3) + Kod(S') = Kods(M?3)?
Need a proper definition of Kods(M?) first.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Geometric structures

Look at the table for dimension 2, the most plausible one to define
Kods(M?3) is to use the geometric structures a /a Thurston.
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Kodaira dimension for 3-manifolds

Geometric structures

Look at the table for dimension 2, the most plausible one to define
Kods(M?3) is to use the geometric structures a /a Thurston.

This is a modern incarnation of Klein's Erlangen Program.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Geometric structures

Look at the table for dimension 2, the most plausible one to define
Kods(M?3) is to use the geometric structures a /a Thurston.

This is a modern incarnation of Klein's Erlangen Program.

A geometric structure on a manifold M is a diffeomorphism from
M to X/ for some model geometry (X, G), where I is a discrete
subgroup of G acting freely on X.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Model geometry

@ X simply connected smooth manifold;

@ Lie group G acts on X transitively and effectively with
compact point stabilizers;

@ G is maximal among such groups;

@ There is at least one M diffeomorphic to X/I' with finite
volume, where T is a discrete subgroup of G acting freely on
X.

First two conditions guarantee left G-invariant Riemannian metric
on X. The third implies G = Isom(X).
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Geometric structures in dimension 3

The fourth condition above implies there are finitely many
geometric structures. In fact, in dimension 3, there are 8
geometries. We divide them into 4 classes, called “cat”.

—o0: S3and S?xE;
E3, Nil and Sol:;
H2 x E, SLy(R);
H3.

NIW = O
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

SETNIES

Example of Nil: quotient of Heisenberg group by the “integral
Heisenberg group”.

Example of Sol: mapping torus of an Anosov map of the 2-torus,

e.g. the automorphism given by (i 1)

Examples of SL>(R): unit tangent bundle of ¥,55; Brieskorn
homology spheres {x? + y9 + z" =0} n S°, /lv i % + % <1
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Geometrization

To define the Kodaira dimension for a general 3-manifold, we need
to use Thurston's geometrization.

Theorem (Kneser-Milnor)

Every compact, orientable 3-manifold can be decomposed into the
connected sum of a unique (finite) collection of prime 3-manifolds.
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Kodaira dimension for 3-manifolds

Geometrization

To define the Kodaira dimension for a general 3-manifold, we need
to use Thurston's geometrization.

Theorem (Kneser-Milnor)

Every compact, orientable 3-manifold can be decomposed into the
connected sum of a unique (finite) collection of prime 3-manifolds.

Theorem (Perelman, Hamilton)

Every oriented prime closed 3-manifold can be cut along tori, so
that the interior of each of the resulting manifolds has a geometric
structure with finite volume.

So start with any closed 3-manifold, we can decompose along
spheres and tori such that each resulting piece is geometric.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Definition of xt(M?3)

Definition (and Proposition)

kE(M3) = max;{cat(M;) | M; are geometric pieces} is well defined.

We have to show the well definedness since the decomposition
might not be unique.
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Kodaira dimension for 3-manifolds

Definition of xt(M?3)

Definition (and Proposition)

kE(M3) = max;{cat(M;) | M; are geometric pieces} is well defined.

We have to show the well definedness since the decomposition
might not be unique. The key is

Theorem (Thurston)

Non-closed 3-dimensional geometric manifolds with finite volume
exist only for geometries in category 1 or 3, i.e. H3, H? x E and
SLy(R).
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Definition of Kods and virtual Betti number

We define
Kods(M?3) := [k{(M®)].
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Kodaira dimension for 3-manifolds

Definition of Kods and virtual Betti number

We define
Kods(M?3) := [k{(M®)].

We define the virtual Betti number
vby (M) := sup{b1 (M) | M is a finite covering of M}.

Then for irreducible 3-manifolds, there is a numerical
characterization of xf(M?3):

—oo  when vb; =0,
Kod3(M®)=1{ 0  when vby is finite and positive,
1 when vby is infinite.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Compatiblity

@ When M3 x St is complex/symplectic, M is a ¥z bundle over
S! (Friedl-Vidussi, Etgii). Then it is easy to check
Kod3(M?3) = [kt(M3)] = Kod(M?® x S1).

@ It is also compatible with 2-d, 1-d Kodaira dimension in the
sense of additivity.

@ It is invariant under unramified covering.
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Kodaira dimension for 3-manifolds

Compatiblity

@ When M3 x St is complex/symplectic, M is a ¥z bundle over
S! (Friedl-Vidussi, Etgii). Then it is easy to check
Kod3(M?3) = [kt(M3)] = Kod(M?® x S1).

@ It is also compatible with 2-d, 1-d Kodaira dimension in the
sense of additivity.

@ It is invariant under unramified covering.

Furthermore, we have

If f: M® — N3 is a non-zero degree map, then k*(M) > kt(N).

One key point: geometric manifolds are determined by their
fundamental groups.

Weiyi Zhang Geometric structures and Kodaira dimension



Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Definition of Gromov norm

To show H?3 is the largest, we use Gromov norm.
Let |- |1 : Ck(M;R) - R be the /* norm on real singular chains: for
z=Ycio; € C,(M;R),

|zl = ) cil.

Then the Gromov norm is

IM[[ = inf{|zl1 | [2] = [M]} € Rxo.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

Basic properties

e By definition, ||M|| > deg(f)||N||, if f: M" - N".
So S2, T2 have ||M|| = 0, since they have self-map of degree
>2.
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Kodaira dimension for 3-manifolds

Basic properties

e By definition, ||M|| > deg(f)||N||, if f: M" - N".
So S2, T2 have ||M|| = 0, since they have self-map of degree
>2.

o For hyperbolic manifold M”, ||M|| = Y2M) 5 0, where
vp = Vol(regular ideal simplex), e.g. vo = .
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Kodaira dimension for 3-manifolds

Basic properties

e By definition, ||M|| > deg(f)||N||, if f: M" - N".
So S2, T2 have ||M|| = 0, since they have self-map of degree
>2.

o For hyperbolic manifold M”, ||M|| = Y2M) 5 0, where
vp = Vol(regular ideal simplex), e.g. vo = .

@ Gluing. The Gromov norm is additive when gluing along
spheres or tori.
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Geometric structures
Kodaira dimension for 3-manifolds
Gromov norm

Kodaira dimension for 3-manifolds

More vanishing results

@ If M admits an S! action.

e If the fundamental group is amenable (e.g. nilpotent,
solvable, abelian, finite, ---).
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Kodaira dimension for 3-manifolds

More vanishing results

@ If M admits an S! action.

e If the fundamental group is amenable (e.g. nilpotent,
solvable, abelian, finite, ---).

These two properties imply that 7 geometries with cat <1 have
vanishing Gromov norm.

= A 3-manifold has vanishing Gromov norm if and only if it is a
graph manifold.
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Kodaira dimension for 3-manifolds

More vanishing results

@ If M admits an S! action.

e If the fundamental group is amenable (e.g. nilpotent,
solvable, abelian, finite, ---).

These two properties imply that 7 geometries with cat <1 have
vanishing Gromov norm.

= A 3-manifold has vanishing Gromov norm if and only if it is a
graph manifold.

All the above imply

If f: M® - N3 with deg f #0, then k*(N) = 1.5 implies
k(M) =1.5.
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Kodaira dimension for geometric 4-manifolds
Einstein 4-manifolds

Kodaira dimension for higher dimensional manifolds Kodaira dimension for geometric manifolds
Complex/symplectic manifolds with nonzero Gromov norm

19 geometries in dimension 4

The classification of geometric structures in dimension 4 due to
Filipkiewicz (Warwick thesis)

P2(C), S* S3xE, S?x 52, S?2 x[E?, S? x H?, So/g and So/f;
E*, Nil*, Nil> x E and Soly, ,(including Sol* x E);

H? x E2, SL, x E, and F*

H3 x E;

H?(C), H? x H? and H*.

NNIW = O 8

Here F* admits no compact model.
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Kodaira dimension for geometric 4-manifolds
Einstein 4-manifolds

Kodaira dimension for higher dimensional manifolds Kodaira dimension for geometric manifolds
Complex/symplectic manifolds with nonzero Gromov norm

19 geometries in dimension 4

The classification of geometric structures in dimension 4 due to
Filipkiewicz (Warwick thesis)

—0o: P?(C), §* S3xE, S?x 5?2, S%2 x[E?, S? x H?, Solg and Solf;
0: E* Nil*, Nil®xE and Solp, »(including Sol® x E);
1: H2X]E2,31§XE, and F%;

% : H3 xE;
2: H?(C), H? x H? and H*.

Here F* admits no compact model.

Definition

Let M* be a 4-dimensional geometric manifold. The Kodaira
dimension x&(M) is defined to be the category number of M.
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Kodaira dimension for geometric 4-manifolds

Einstein 4-manifolds

Kodaira dimension for geometric manifolds
Complex/symplectic manifolds with nonzero Gromov norm

Geometric manifolds of [k&] =1

Kodaira dimension for higher dimensional manifolds

A closed geometric 4-manifold with [k8] =1 admits a foliation by
geodesic circles.
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Kodaira dimension for geometric 4-manifolds
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Geometric manifolds of [k&] =1

A closed geometric 4-manifold with [k8] =1 admits a foliation by
geodesic circles.

Wadsley (another Warwick thesis): A double cover of such a
manifold admits a non trivial S action. In particular, it has
vanishing Gromov norm.
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Geometric manifolds of [k&] =1

A closed geometric 4-manifold with [k8] =1 admits a foliation by
geodesic circles.

Wadsley (another Warwick thesis): A double cover of such a
manifold admits a non trivial S action. In particular, it has
vanishing Gromov norm.

A geometric manifold with k& = —oco or 0 has amenable
fundamental group or admits a non trivial S* action. In particular,
it has vanishing Gromov norm.
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Geometric manifolds of kK8 =2

Kodaira dimension for higher dimensional manifolds

A closed geometric 4-manifold has nonzero Gromov norm if and
only if kK8 = 2.
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Geometric manifolds of kK8 =2

A closed geometric 4-manifold has nonzero Gromov norm if and
only if kK8 = 2.

The “if" part of the above corollary follows from
o H*: ||M|| = V%Vol(l\/l) (Gromov-Thurston)
o H2 x H?: ||M| = ;?VOI(M). (Bucher-Karlsson)

e H2(C) =SU(2,1)/S(U(2) x U(1)) is a closed oriented locally
symmetric space of non-compact type, then ||M|| >0
(Lafont-Schmidt).
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Mapping order of Geometric 4-manifolds

It is easy to see that & is preserved under finite covering.
Similar to the result for monotonicity of x* for 3-manifolds, we have

Theorem (Neofytidis)

If f: M* — N* is a map of non-zero degree between closed
geometric 4-manifolds, then k& (M) > k8(N).
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Hitchin-Thorpe

As suggested by the solution of geometrization conjecture by Ricci
flow, building blocks of 4-manifolds should consist of Einstein
manifolds and collapsed pieces. Einstein 4-manifolds are far more
complicated than Einstein 3-manifolds. However, we have the
following Hitchin-Thorpe theorem.

Theorem (Hitchin-Thorpe)

Any compact oriented Einstein 4-manifold (M, g) satisfies
2x +30 > 0. The equality holds if and only if (M, g) is finitely
covered by a Calabi-Yau K3 surface or by a 4-torus.
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No symplectic/complex Einstein manifolds with Kod =1

If there is an almost complex structure J, then 2y + 30 = K2.
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No symplectic/complex Einstein manifolds with Kod =1

If there is an almost complex structure J, then 2y + 30 = K2.

For symplectic/complex 4-manifolds with Kod =1, we have K2 <0
since blow-up reduces K2. By Hitchin-Thorpe, such Einstein ones
have K2 =0, which holds for Kod = 0.
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No symplectic/complex Einstein manifolds with Kod =1

If there is an almost complex structure J, then 2y + 30 = K2.

For symplectic/complex 4-manifolds with Kod =1, we have K2 <0
since blow-up reduces K2. By Hitchin-Thorpe, such Einstein ones
have K2 =0, which holds for Kod = 0.

Hence there is no symplectic/complex Einstein manifolds with
Kod = 1.

This suggests contributions from Kodaira dimension 1 are all from
collapsed pieces. All from Model Geometries?
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Geometric 5-manifolds (Neofytidis-Z.)

@ Geng classifies 5-dimensional geometries. There exist 58
geometries, and 54 of them are realized by compact manifolds.
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Geometric 5-manifolds (Neofytidis-Z.)

@ Geng classifies 5-dimensional geometries. There exist 58
geometries, and 54 of them are realized by compact manifolds.

@ We can define k€ for them. It takes values —c0,0,1, %,2, g
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Geometric 5-manifolds (Neofytidis-Z.)

@ Geng classifies 5-dimensional geometries. There exist 58
geometries, and 54 of them are realized by compact manifolds.

@ We can define k€ for them. It takes values —c0,0,1, %,2, g
@ It coincides with Gromov order. That is, if f: M* — N*is a

map of non-zero degree between closed geometric
4-manifolds, then xk8(M) > k8(N).
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Geometric 5-manifolds (Neofytidis-Z.)

@ Geng classifies 5-dimensional geometries. There exist 58
geometries, and 54 of them are realized by compact manifolds.

@ We can define k€ for them. It takes values —c0,0,1, %,2, g
@ It coincides with Gromov order. That is, if f: M* — N*is a

map of non-zero degree between closed geometric
4-manifolds, then xk8(M) > k8(N).

@ A closed geometric 5-manifold has nonzero Gromov norm if

and only if kK& = g i.e., when M is modeled on

H®, SL(3,R)/SO(3) or H3 x H2.
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Higher dimensional geometric manifolds

A complete connected Riemannian manifold M is a locally
symmetric space of non-compact type if it is diffeomorphic to

N G/K where G is a centerless semisimple Lie group, K is a
maximal compact subgroup in G, and I is a discrete subgroup in
G that acts freely on G/K via left action.

Theorem (P. H. How)

Let M be a geometric manifold. Then ||M|| > 0 if and only if M is
a locally symmetric space of non-compact type.

We can merely assume M is a closed topological manifold that
admits a smooth structure with a locally homogeneous Riemannian
metric.
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Some questions

@ Let M be a smooth 2n-dimensional complex manifold with
nonvanishing Gromov norm. Is k(M) = n?
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Some questions

@ Let M be a smooth 2n-dimensional complex manifold with
nonvanishing Gromov norm. Is k(M) = n?

@ Let M be a smooth 4-dimensional symplectic manifold with

nonvanishing Gromov norm. Is k*(M) =27
This is true for Kahler surfaces.
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Some questions

@ Let M be a smooth 2n-dimensional complex manifold with
nonvanishing Gromov norm. Is k(M) = n?

@ Let M be a smooth 4-dimensional symplectic manifold with
nonvanishing Gromov norm. Is k*(M) =27
This is true for Kahler surfaces.

@ Suppose that (M1,w;1) and (M, w,) are symplectic
4-manifolds and almost complex structures J; are tamed by
wi. If fis a (J1, J2)-pseudo-holomorphic map (i.e.
foJ; =Jpof) of non-zero degree from (My,w1) to (Ma,w2),
is K5 (M, w1) > kK*(Ma,w2)?

Note: If there is a holomorphic map of non-zero degree from
(My, J1) to (Ma, J2), then k"(My, Ji) > k"(Ma, ).

Weiyi Zhang Geometric structures and Kodaira dimension



Kodaira dimension for geometric 4-manifolds
Einstein 4-manifolds

Kodaira dimension for higher dimensional manifolds Kodaira dimension for geometric manifolds
Complex/symplectic manifolds with nonzero Gromov norm

Answer to Question 1: Kahler 3-folds

We have a satisfactory answer to above Question 1: Let M be a
smooth 2n-dimensional complex manifold with nonvanishing
Gromov norm. Is k"(M) = n?

Theorem (Neofytidis-Z.)

If X is a smooth Kahler 3-fold with non-vanishing Gromov norm,
then k"(X) = 3.

We can reduce it to projective manifolds, since for any compact
Kahler manifold X of complex dimension three, there exists a
bimeromorphic Kahler manifold X’ which is deformation equivalent
to a projective manifold.
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Answer to Question 1: Projective manifolds

It is based on the following facts

@ Gromov norm is a birational invariant. That is, birationally
equivalent smooth projective varieties (resp. bimeromorphic
smooth Kahler manifolds) have the same Gromov norm.

@ Any uniruled manifold has vanishing Gromov norm.

and two conjectures, proved in dimension < 3:

@ (Mumford) A smooth projective variety with k"' = —co is
uniruled.

@ (Kollr) Let X be a smooth projective variety with "(X) = 0.
Then w1(X) has a finite index Abelian subgroup.
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Answer to Question 1: Projective manifolds (cont.)

Theorem (Neofytidis-Z.)

@ Up to Kollar’s Conjecture, any smooth 2n-dimensional
complex projective variety M with k"(M) >0 and |M| >0
has k"'(M) = n.

@ Further assuming Mumford’s Conjecture, any smooth
projective variety with non-vanishing Gromov norm is of
general type.

Corollary

| A\

Let M be a smooth complex projective n-fold with non-vanishing
simplicial volume. Then x"(M) cannot be n—1,n—2 or n-3. If,
moreover, n =3, then /-;h(l\/l) =3.
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Yamabe invariant

Y(M) = sup inf SgdVy,
(M) [g]ec 8€[&] mETE

where g is a Riemannian metric on M, s, is the scalar curvature of
g, and C is the set of conformal classes on M.

Question (LeBrun)

If M* admits a symplectic structure and Y (M*) <0, is
kS(M*) =27

e For minimal M*, x$(M*) =2 would imply Y(M*) <0.
@ It is true for Kahler surfaces.

o F-structure = Y(M*) > 0. Y(M) >0 if and only if M has
positive scalar curvature.

Weiyi Zhang Geometric structures and Kodaira dimension



Definitions
Properties
Kodaira dimension for almost complex manifolds (Chen-Z.)

Pluricanonical genus

We can generalize the two (equivalent) definitions of complex
Kodaira dimension to almost complex manifolds.

We still have IC = A™°, but it is no longer holomorphic.

However, we have 9 : KK > A"l = T%l g K. and it can be extended
to an operator O, : K& — T%1 @ K®™ for m > 2 inductively by
Leibniz rule.

We still have the pluricanonical genus

Po(X,J) = HO(X,K®™) = {s e [(X,K®™) : Opms = 0}.

Proposition

HO(X,K®™) is finite dimensional.
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Kodaira dimension for almost complex manifolds (Chen-Z.)

Kodaira dimension x7(X)

Definition
The Kodaira dimension x7(X) of (X, J) is defined as:

—o0, if Py, =0 forany m>0
K,J(X)= log Pm

limsup,,_,., ——, otherwise.
log m
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Kodaira dimension for almost complex manifolds (Chen-Z.)

Kodaira dimension x,(X)

We can still define the pluricanonical map by

Om(x) = [s0(x) -2 sn(x)];

where s; are a basis of HO(X,K®™).

®,,, is a pseudoholomorphic map and the image is a projective
subvariety of CPN.
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Kodaira dimension for almost complex manifolds (Chen-Z.)

Kodaira dimension x,(X)

We can still define the pluricanonical map by
®m(x) = [s0(x) : - sy (x)],

where s; are a basis of HO(X,K®™).

®,,, is a pseudoholomorphic map and the image is a projective
subvariety of CPN.

Definition
The Kodaira dimension (X)) of (X,J) is defined as:

—oo, if P, =0 forany m>0

HJ(X)={

maxdim ®,,, otherwise.
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Properties

We only summarize the results for almost complex 4-manifolds.

o =k’ When J is integrable, they are equal to x”.
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Properties

We only summarize the results for almost complex 4-manifolds.

o =k’ When J is integrable, they are equal to x”.

o «” is a birational invariant, i.e. if u: (X,J) = (Y,Jy)is a

degree 1 pseudoholomorphic map. Then x”(X) = k7 (Y).
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Properties

We only summarize the results for almost complex 4-manifolds.

o =k’ When J is integrable, they are equal to x”.

7 is a birational invariant, i.e. if u:(X,J) - (Y,Jy)is a
degree 1 pseudoholomorphic map. Then x”(X) = k7 (Y).
J

QK

@ k” is not a deformation invariant, hence not a smooth

invariant.
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Properties

We only summarize the results for almost complex 4-manifolds.

o =k’ When J is integrable, they are equal to x”.

o «” is a birational invariant, i.e. if u: (X,J) = (Y,Jy)is a
degree 1 pseudoholomorphic map. Then x”(X) = k7 (Y).

e x7 is not a deformation invariant, hence not a smooth

invariant.

@ Kkl =—co0or 0, if Jis not integrable.
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Properties

We only summarize the results for almost complex 4-manifolds.

o =k’ When J is integrable, they are equal to x”.

o «” is a birational invariant, i.e. if u: (X,J) = (Y,Jy)is a
degree 1 pseudoholomorphic map. Then x”(X) = k7 (Y).

e x7 is not a deformation invariant, hence not a smooth

invariant.

@ Kkl =—co0or 0, if Jis not integrable.

@ We have similar generalizations of litaka dimension.
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Thanks very much for your attention !

i Zhang Geometric structures and Kodaira dimension
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